From a quantum theory to a classical one
- URL: http://arxiv.org/abs/2004.00301v1
- Date: Wed, 1 Apr 2020 09:16:38 GMT
- Title: From a quantum theory to a classical one
- Authors: Alessandro Coppo, Alessandro Cuccoli, Caterina Foti, Paola Verrucchi
- Abstract summary: We present and discuss a formal approach for describing the quantum to classical crossover.
The method was originally introduced by L. Yaffe in 1982 for tackling large-$N$ quantum field theories.
- Score: 117.44028458220427
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present and discuss a formal approach for describing the quantum to
classical crossover based on the group-theoretic construction of generalized
coherent states. The method was originally introduced by L. Yaffe in 1982 for
tackling large-$N$ quantum field theories, and has been recently used for
studying open quantum systems whose environment, while becoming macroscopic,
may or may not display a classical behaviour. Referring to these recent
developments, in this paper we provide the essential elements of Yaffes's
approach in the framework of standard quantum mechanics, so as to clarify how
the approach can be used without referring to quantum field theory. Moreover,
we address the role played by a possible global symmetry in making the
large-$N$ limit of the original quantum theory to flow into a formally well
defined classical theory, and we specifically consider the quantum-to-classical
crossover of angular momentum. We also give details of a paradigmatic example,
namely that of $N$ free one-dimensional spinless particles. Finally, we discuss
upon the foundational requirement that any classical description should
ultimately be derived from an underlying quantum theory, that however is not,
and should never be confused with, the one obtained via some quantization
procedure of the classical description itself.
Related papers
- Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Quantum Instability [30.674987397533997]
We show how a time-independent, finite-dimensional quantum system can give rise to a linear instability corresponding to that in the classical system.
An unstable quantum system has a richer spectrum and a much longer recurrence time than a stable quantum system.
arXiv Detail & Related papers (2022-08-05T19:53:46Z) - On the Common Logical Structure of Classical and Quantum Mechanics [0.0]
We show that quantum theory does satisfy the classical distributivity law once the full meaning of quantum propositions is properly taken into account.
We show that the lattice of statistical propositions in classical mechanics follows the same structure, yielding an analogue non-commutative sublattice of classical propositions.
arXiv Detail & Related papers (2022-06-21T18:31:53Z) - Theory of Quantum Generative Learning Models with Maximum Mean
Discrepancy [67.02951777522547]
We study learnability of quantum circuit Born machines (QCBMs) and quantum generative adversarial networks (QGANs)
We first analyze the generalization ability of QCBMs and identify their superiorities when the quantum devices can directly access the target distribution.
Next, we prove how the generalization error bound of QGANs depends on the employed Ansatz, the number of qudits, and input states.
arXiv Detail & Related papers (2022-05-10T08:05:59Z) - Gravity, Quantum Fields and Quantum Information: Problems with classical
channel and stochastic theories [0.0]
We show that the notion of interactions mediated by an information channel is not, in general, equivalent to the treatment of interactions by quantum field theory.
Second, we point out that in general one cannot replace a quantum field by that of classical sources, or mock up the effects of quantum fluctuations by classical noises.
arXiv Detail & Related papers (2022-02-06T14:55:46Z) - Quantum Causal Inference in the Presence of Hidden Common Causes: an
Entropic Approach [34.77250498401055]
We put forth a new theoretical framework for merging quantum information science and causal inference by exploiting entropic principles.
We apply our proposed framework to an experimentally relevant scenario of identifying message senders on quantum noisy links.
This approach can lay the foundations of identifying originators of malicious activity on future multi-node quantum networks.
arXiv Detail & Related papers (2021-04-24T22:45:50Z) - Entanglement of Classical and Quantum Short-Range Dynamics in Mean-Field
Systems [0.0]
We show the emergence of classical dynamics for very general quantum lattice systems with mean-field interactions.
This leads to a theoretical framework in which the classical and quantum worlds are entangled.
arXiv Detail & Related papers (2021-03-11T15:23:59Z) - Classical limit of quantum mechanics for damped driven oscillatory
systems: Quantum-classical correspondence [0.0]
We develop a quantum formalism on the basis of a linear-invariant theorem.
We illustrate the correspondence of the quantum energy with the classical one in detail.
arXiv Detail & Related papers (2020-10-18T12:12:01Z) - Preferred basis, decoherence and a quantum state of the Universe [77.34726150561087]
We review a number of issues in foundations of quantum theory and quantum cosmology.
These issues can be considered as a part of the scientific legacy of H.D. Zeh.
arXiv Detail & Related papers (2020-06-28T18:07:59Z) - Witnessing non-classicality beyond quantum theory [0.0]
We show that if a physical system can mediate locally the generation of entanglement between two quantum systems, then it itself must be non-classical.
We do not assume any classical or quantum formalism to describe the mediating physical system.
arXiv Detail & Related papers (2020-03-17T22:42:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.