IVFS: Simple and Efficient Feature Selection for High Dimensional
Topology Preservation
- URL: http://arxiv.org/abs/2004.01299v1
- Date: Thu, 2 Apr 2020 23:05:00 GMT
- Title: IVFS: Simple and Efficient Feature Selection for High Dimensional
Topology Preservation
- Authors: Xiaoyun Li, Chengxi Wu, Ping Li
- Abstract summary: We propose a simple and effective feature selection algorithm to enhance sample similarity preservation.
The proposed algorithm is able to well preserve the pairwise distances, as well as topological patterns, of the full data.
- Score: 33.424663018395684
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Feature selection is an important tool to deal with high dimensional data. In
unsupervised case, many popular algorithms aim at maintaining the structure of
the original data. In this paper, we propose a simple and effective feature
selection algorithm to enhance sample similarity preservation through a new
perspective, topology preservation, which is represented by persistent diagrams
from the context of computational topology. This method is designed upon a
unified feature selection framework called IVFS, which is inspired by random
subset method. The scheme is flexible and can handle cases where the problem is
analytically intractable. The proposed algorithm is able to well preserve the
pairwise distances, as well as topological patterns, of the full data. We
demonstrate that our algorithm can provide satisfactory performance under a
sharp sub-sampling rate, which supports efficient implementation of our
proposed method to large scale datasets. Extensive experiments validate the
effectiveness of the proposed feature selection scheme.
Related papers
- A Weighted K-Center Algorithm for Data Subset Selection [70.49696246526199]
Subset selection is a fundamental problem that can play a key role in identifying smaller portions of the training data.
We develop a novel factor 3-approximation algorithm to compute subsets based on the weighted sum of both k-center and uncertainty sampling objective functions.
arXiv Detail & Related papers (2023-12-17T04:41:07Z) - Distributed Dynamic Safe Screening Algorithms for Sparse Regularization [73.85961005970222]
We propose a new distributed dynamic safe screening (DDSS) method for sparsity regularized models and apply it on shared-memory and distributed-memory architecture respectively.
We prove that the proposed method achieves the linear convergence rate with lower overall complexity and can eliminate almost all the inactive features in a finite number of iterations almost surely.
arXiv Detail & Related papers (2022-04-23T02:45:55Z) - Parallel feature selection based on the trace ratio criterion [4.30274561163157]
This work presents a novel parallel feature selection approach for classification, namely Parallel Feature Selection using Trace criterion (PFST)
Our method uses trace criterion, a measure of class separability used in Fisher's Discriminant Analysis, to evaluate feature usefulness.
The experiments show that our method can produce a small set of features in a fraction of the amount of time by the other methods under comparison.
arXiv Detail & Related papers (2022-03-03T10:50:33Z) - Compactness Score: A Fast Filter Method for Unsupervised Feature
Selection [66.84571085643928]
We propose a fast unsupervised feature selection method, named as, Compactness Score (CSUFS) to select desired features.
Our proposed algorithm seems to be more accurate and efficient compared with existing algorithms.
arXiv Detail & Related papers (2022-01-31T13:01:37Z) - Low-rank Dictionary Learning for Unsupervised Feature Selection [11.634317251468968]
We introduce a novel unsupervised feature selection approach by applying dictionary learning ideas in a low-rank representation.
A unified objective function for unsupervised feature selection is proposed in a sparse way by an $ell_2,1$-norm regularization.
Our experimental findings reveal that the proposed method outperforms the state-of-the-art algorithm.
arXiv Detail & Related papers (2021-06-21T13:39:10Z) - Auto-weighted Multi-view Feature Selection with Graph Optimization [90.26124046530319]
We propose a novel unsupervised multi-view feature selection model based on graph learning.
The contributions are threefold: (1) during the feature selection procedure, the consensus similarity graph shared by different views is learned.
Experiments on various datasets demonstrate the superiority of the proposed method compared with the state-of-the-art methods.
arXiv Detail & Related papers (2021-04-11T03:25:25Z) - Sparse PCA via $l_{2,p}$-Norm Regularization for Unsupervised Feature
Selection [138.97647716793333]
We propose a simple and efficient unsupervised feature selection method, by combining reconstruction error with $l_2,p$-norm regularization.
We present an efficient optimization algorithm to solve the proposed unsupervised model, and analyse the convergence and computational complexity of the algorithm theoretically.
arXiv Detail & Related papers (2020-12-29T04:08:38Z) - Adaptive Graph-based Generalized Regression Model for Unsupervised
Feature Selection [11.214334712819396]
How to select the uncorrelated and discriminative features is the key problem of unsupervised feature selection.
We present a novel generalized regression model imposed by an uncorrelated constraint and the $ell_2,1$-norm regularization.
It can simultaneously select the uncorrelated and discriminative features as well as reduce the variance of these data points belonging to the same neighborhood.
arXiv Detail & Related papers (2020-12-27T09:07:26Z) - Joint Adaptive Graph and Structured Sparsity Regularization for
Unsupervised Feature Selection [6.41804410246642]
We propose a joint adaptive graph and structured sparsity regularization unsupervised feature selection (JASFS) method.
A subset of optimal features will be selected in group, and the number of selected features will be determined automatically.
Experimental results on eight benchmarks demonstrate the effectiveness and efficiency of the proposed method.
arXiv Detail & Related papers (2020-10-09T08:17:04Z) - Feature Robust Optimal Transport for High-dimensional Data [125.04654605998618]
We propose feature-robust optimal transport (FROT) for high-dimensional data, which solves high-dimensional OT problems using feature selection to avoid the curse of dimensionality.
We show that the FROT algorithm achieves state-of-the-art performance in real-world semantic correspondence datasets.
arXiv Detail & Related papers (2020-05-25T14:07:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.