Discriminator Contrastive Divergence: Semi-Amortized Generative Modeling
by Exploring Energy of the Discriminator
- URL: http://arxiv.org/abs/2004.01704v1
- Date: Sun, 5 Apr 2020 01:50:16 GMT
- Title: Discriminator Contrastive Divergence: Semi-Amortized Generative Modeling
by Exploring Energy of the Discriminator
- Authors: Yuxuan Song, Qiwei Ye, Minkai Xu, Tie-Yan Liu
- Abstract summary: Generative Adversarial Networks (GANs) have shown great promise in modeling high dimensional data.
We introduce the Discriminator Contrastive Divergence, which is well motivated by the property of WGAN's discriminator.
We demonstrate the benefits of significant improved generation on both synthetic data and several real-world image generation benchmarks.
- Score: 85.68825725223873
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Generative Adversarial Networks (GANs) have shown great promise in modeling
high dimensional data. The learning objective of GANs usually minimizes some
measure discrepancy, \textit{e.g.}, $f$-divergence~($f$-GANs) or Integral
Probability Metric~(Wasserstein GANs). With $f$-divergence as the objective
function, the discriminator essentially estimates the density ratio, and the
estimated ratio proves useful in further improving the sample quality of the
generator. However, how to leverage the information contained in the
discriminator of Wasserstein GANs (WGAN) is less explored. In this paper, we
introduce the Discriminator Contrastive Divergence, which is well motivated by
the property of WGAN's discriminator and the relationship between WGAN and
energy-based model. Compared to standard GANs, where the generator is directly
utilized to obtain new samples, our method proposes a semi-amortized generation
procedure where the samples are produced with the generator's output as an
initial state. Then several steps of Langevin dynamics are conducted using the
gradient of the discriminator. We demonstrate the benefits of significant
improved generation on both synthetic data and several real-world image
generation benchmarks.
Related papers
- Adversarial Likelihood Estimation With One-Way Flows [44.684952377918904]
Generative Adversarial Networks (GANs) can produce high-quality samples, but do not provide an estimate of the probability density around the samples.
We show that our method converges faster, produces comparable sample quality to GANs with similar architecture, successfully avoids over-fitting to commonly used datasets and produces smooth low-dimensional latent representations of the training data.
arXiv Detail & Related papers (2023-07-19T10:26:29Z) - GANs Settle Scores! [16.317645727944466]
We propose a unified approach to analyzing the generator optimization through variational approach.
In $f$-divergence-minimizing GANs, we show that the optimal generator is the one that matches the score of its output distribution with that of the data distribution.
We propose novel alternatives to $f$-GAN and IPM-GAN training based on score and flow matching, and discriminator-guided Langevin sampling.
arXiv Detail & Related papers (2023-06-02T16:24:07Z) - Inferential Wasserstein Generative Adversarial Networks [9.859829604054127]
We introduce a novel inferential Wasserstein GAN (iWGAN) model, which is a principled framework to fuse auto-encoders and WGANs.
The iWGAN greatly mitigates the symptom of mode collapse, speeds up the convergence, and is able to provide a measurement of quality check for each individual sample.
arXiv Detail & Related papers (2021-09-13T00:43:21Z) - cGANs with Auxiliary Discriminative Classifier [43.78253518292111]
Conditional generative models aim to learn the underlying joint distribution of data and labels.
auxiliary classifier generative adversarial networks (AC-GAN) have been widely used, but suffer from the issue of low intra-class diversity on generated samples.
We propose novel cGANs with auxiliary discriminative classifier (ADC-GAN) to address the issue of AC-GAN.
arXiv Detail & Related papers (2021-07-21T13:06:32Z) - Understanding Overparameterization in Generative Adversarial Networks [56.57403335510056]
Generative Adversarial Networks (GANs) are used to train non- concave mini-max optimization problems.
A theory has shown the importance of the gradient descent (GD) to globally optimal solutions.
We show that in an overized GAN with a $1$-layer neural network generator and a linear discriminator, the GDA converges to a global saddle point of the underlying non- concave min-max problem.
arXiv Detail & Related papers (2021-04-12T16:23:37Z) - Sampling-Decomposable Generative Adversarial Recommender [84.05894139540048]
We propose a Sampling-Decomposable Generative Adversarial Recommender (SD-GAR)
In the framework, the divergence between some generator and the optimum is compensated by self-normalized importance sampling.
We extensively evaluate the proposed algorithm with five real-world recommendation datasets.
arXiv Detail & Related papers (2020-11-02T13:19:10Z) - GANs with Variational Entropy Regularizers: Applications in Mitigating
the Mode-Collapse Issue [95.23775347605923]
Building on the success of deep learning, Generative Adversarial Networks (GANs) provide a modern approach to learn a probability distribution from observed samples.
GANs often suffer from the mode collapse issue where the generator fails to capture all existing modes of the input distribution.
We take an information-theoretic approach and maximize a variational lower bound on the entropy of the generated samples to increase their diversity.
arXiv Detail & Related papers (2020-09-24T19:34:37Z) - Your GAN is Secretly an Energy-based Model and You Should use
Discriminator Driven Latent Sampling [106.68533003806276]
We show that sampling in latent space can be achieved by sampling in latent space according to an energy-based model induced by the sum of the latent prior log-density and the discriminator output score.
We show that Discriminator Driven Latent Sampling(DDLS) is highly efficient compared to previous methods which work in the high-dimensional pixel space.
arXiv Detail & Related papers (2020-03-12T23:33:50Z) - GANs with Conditional Independence Graphs: On Subadditivity of
Probability Divergences [70.30467057209405]
Generative Adversarial Networks (GANs) are modern methods to learn the underlying distribution of a data set.
GANs are designed in a model-free fashion where no additional information about the underlying distribution is available.
We propose a principled design of a model-based GAN that uses a set of simple discriminators on the neighborhoods of the Bayes-net/MRF.
arXiv Detail & Related papers (2020-03-02T04:31:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.