Temporally Distributed Networks for Fast Video Semantic Segmentation
- URL: http://arxiv.org/abs/2004.01800v2
- Date: Tue, 7 Apr 2020 00:44:51 GMT
- Title: Temporally Distributed Networks for Fast Video Semantic Segmentation
- Authors: Ping Hu, Fabian Caba Heilbron, Oliver Wang, Zhe Lin, Stan Sclaroff and
Federico Perazzi
- Abstract summary: TDNet is a temporally distributed network designed for fast and accurate video semantic segmentation.
We observe that features extracted from a certain high-level layer of a deep CNN can be approximated by composing features extracted from several shallower sub-networks.
Experiments on Cityscapes, CamVid, and NYUD-v2 demonstrate that our method achieves state-of-the-art accuracy with significantly faster speed and lower latency.
- Score: 64.5330491940425
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present TDNet, a temporally distributed network designed for fast and
accurate video semantic segmentation. We observe that features extracted from a
certain high-level layer of a deep CNN can be approximated by composing
features extracted from several shallower sub-networks. Leveraging the inherent
temporal continuity in videos, we distribute these sub-networks over sequential
frames. Therefore, at each time step, we only need to perform a lightweight
computation to extract a sub-features group from a single sub-network. The full
features used for segmentation are then recomposed by application of a novel
attention propagation module that compensates for geometry deformation between
frames. A grouped knowledge distillation loss is also introduced to further
improve the representation power at both full and sub-feature levels.
Experiments on Cityscapes, CamVid, and NYUD-v2 demonstrate that our method
achieves state-of-the-art accuracy with significantly faster speed and lower
latency.
Related papers
- SIGMA:Sinkhorn-Guided Masked Video Modeling [69.31715194419091]
Sinkhorn-guided Masked Video Modelling ( SIGMA) is a novel video pretraining method.
We distribute features of space-time tubes evenly across a limited number of learnable clusters.
Experimental results on ten datasets validate the effectiveness of SIGMA in learning more performant, temporally-aware, and robust video representations.
arXiv Detail & Related papers (2024-07-22T08:04:09Z) - ReBotNet: Fast Real-time Video Enhancement [59.08038313427057]
Most restoration networks are slow, have high computational bottleneck, and can't be used for real-time video enhancement.
In this work, we design an efficient and fast framework to perform real-time enhancement for practical use-cases like live video calls and video streams.
To evaluate our method, we emulate two new datasets that real-world video call and streaming scenarios, and show extensive results on multiple datasets where ReBotNet outperforms existing approaches with lower computations, reduced memory requirements, and faster inference time.
arXiv Detail & Related papers (2023-03-23T17:58:05Z) - Distortion-Aware Network Pruning and Feature Reuse for Real-time Video
Segmentation [49.17930380106643]
We propose a novel framework to speed up any architecture with skip-connections for real-time vision tasks.
Specifically, at the arrival of each frame, we transform the features from the previous frame to reuse them at specific spatial bins.
We then perform partial computation of the backbone network on the regions of the current frame that captures temporal differences between the current and previous frame.
arXiv Detail & Related papers (2022-06-20T07:20:02Z) - Representation Recycling for Streaming Video Analysis [19.068248496174903]
StreamDEQ aims to infer frame-wise representations on videos with minimal per-frame computation.
We show that StreamDEQ is able to recover near-optimal representations in a few frames' time and maintain an up-to-date representation throughout the video duration.
arXiv Detail & Related papers (2022-04-28T13:35:14Z) - Deep Multi-Branch Aggregation Network for Real-Time Semantic
Segmentation in Street Scenes [32.54045305607654]
Many state-of-the-art real-time semantic segmentation methods tend to sacrifice some spatial details or contextual information for fast inference.
We propose a novel Deep Multi-branch Aggregation Network (called DMA-Net) based on the encoder-decoder structure to perform real-time semantic segmentation in street scenes.
Our proposed DMA-Net respectively obtains 77.0% and 73.6% mean Intersection over Union (mIoU) at the inference speed of 46.7 FPS and 119.8 FPS by only using a single NVIDIA GTX 1080Ti GPU.
arXiv Detail & Related papers (2022-03-08T12:07:32Z) - Group Fisher Pruning for Practical Network Compression [58.25776612812883]
We present a general channel pruning approach that can be applied to various complicated structures.
We derive a unified metric based on Fisher information to evaluate the importance of a single channel and coupled channels.
Our method can be used to prune any structures including those with coupled channels.
arXiv Detail & Related papers (2021-08-02T08:21:44Z) - Coarse-Fine Networks for Temporal Activity Detection in Videos [45.03545172714305]
We introduce 'Co-Fine Networks', a two-stream architecture which benefits from different abstractions of temporal resolution to learn better video representations for long-term motion.
We show that our method can outperform the state-of-the-arts for action detection in public datasets with a significantly reduced compute and memory footprint.
arXiv Detail & Related papers (2021-03-01T20:48:01Z) - Dual Temporal Memory Network for Efficient Video Object Segmentation [42.05305410986511]
One of the fundamental challenges in Video Object (VOS) is how to make the most use of the temporal information to boost the performance.
We present an end-to-end network which stores short- and long-term video sequence information preceding the current frame as the temporal memories.
Our network consists of two temporal sub-networks including a short-term memory sub-network and a long-term memory sub-network.
arXiv Detail & Related papers (2020-03-13T06:07:45Z) - Real-Time High-Performance Semantic Image Segmentation of Urban Street
Scenes [98.65457534223539]
We propose a real-time high-performance DCNN-based method for robust semantic segmentation of urban street scenes.
The proposed method achieves the accuracy of 73.6% and 68.0% mean Intersection over Union (mIoU) with the inference speed of 51.0 fps and 39.3 fps.
arXiv Detail & Related papers (2020-03-11T08:45:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.