Graph Sequential Network for Reasoning over Sequences
- URL: http://arxiv.org/abs/2004.02001v1
- Date: Sat, 4 Apr 2020 19:18:54 GMT
- Title: Graph Sequential Network for Reasoning over Sequences
- Authors: Ming Tu, Jing Huang, Xiaodong He, Bowen Zhou
- Abstract summary: We consider a novel case where reasoning is needed over graphs built from sequences.
Existing GNN models fulfill this goal by first summarizing the node sequences into fixed-dimensional vectors, then applying GNN on these vectors.
We propose a new type of GNN called Graph Sequential Network (GSN), which features a new message passing algorithm based on co-attention between a node and each of its neighbors.
- Score: 38.766982479196926
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently Graph Neural Network (GNN) has been applied successfully to various
NLP tasks that require reasoning, such as multi-hop machine reading
comprehension. In this paper, we consider a novel case where reasoning is
needed over graphs built from sequences, i.e. graph nodes with sequence data.
Existing GNN models fulfill this goal by first summarizing the node sequences
into fixed-dimensional vectors, then applying GNN on these vectors. To avoid
information loss inherent in the early summarization and make sequential
labeling tasks on GNN output feasible, we propose a new type of GNN called
Graph Sequential Network (GSN), which features a new message passing algorithm
based on co-attention between a node and each of its neighbors. We validate the
proposed GSN on two NLP tasks: interpretable multi-hop reading comprehension on
HotpotQA and graph based fact verification on FEVER. Both tasks require
reasoning over multiple documents or sentences. Our experimental results show
that the proposed GSN attains better performance than the standard GNN based
methods.
Related papers
- Seq-HGNN: Learning Sequential Node Representation on Heterogeneous Graph [57.2953563124339]
We propose a novel heterogeneous graph neural network with sequential node representation, namely Seq-HGNN.
We conduct extensive experiments on four widely used datasets from Heterogeneous Graph Benchmark (HGB) and Open Graph Benchmark (OGB)
arXiv Detail & Related papers (2023-05-18T07:27:18Z) - Geodesic Graph Neural Network for Efficient Graph Representation
Learning [34.047527874184134]
We propose an efficient GNN framework called Geodesic GNN (GDGNN)
It injects conditional relationships between nodes into the model without labeling.
Conditioned on the geodesic representations, GDGNN is able to generate node, link, and graph representations that carry much richer structural information than plain GNNs.
arXiv Detail & Related papers (2022-10-06T02:02:35Z) - Two-level Graph Neural Network [15.014364222532347]
We propose a novel GNN framework, referred to as the Two-level GNN (TL-GNN)
This merges subgraph-level information with node-level information.
Experiments show that TL-GNN outperforms existing GNNs and achieves state-of-the-art performance.
arXiv Detail & Related papers (2022-01-03T02:15:20Z) - VQ-GNN: A Universal Framework to Scale up Graph Neural Networks using
Vector Quantization [70.8567058758375]
VQ-GNN is a universal framework to scale up any convolution-based GNNs using Vector Quantization (VQ) without compromising the performance.
Our framework avoids the "neighbor explosion" problem of GNNs using quantized representations combined with a low-rank version of the graph convolution matrix.
arXiv Detail & Related papers (2021-10-27T11:48:50Z) - A Unified View on Graph Neural Networks as Graph Signal Denoising [49.980783124401555]
Graph Neural Networks (GNNs) have risen to prominence in learning representations for graph structured data.
In this work, we establish mathematically that the aggregation processes in a group of representative GNN models can be regarded as solving a graph denoising problem.
We instantiate a novel GNN model, ADA-UGNN, derived from UGNN, to handle graphs with adaptive smoothness across nodes.
arXiv Detail & Related papers (2020-10-05T04:57:18Z) - Distance Encoding: Design Provably More Powerful Neural Networks for
Graph Representation Learning [63.97983530843762]
Graph Neural Networks (GNNs) have achieved great success in graph representation learning.
GNNs generate identical representations for graph substructures that may in fact be very different.
More powerful GNNs, proposed recently by mimicking higher-order tests, are inefficient as they cannot sparsity of underlying graph structure.
We propose Distance Depiction (DE) as a new class of graph representation learning.
arXiv Detail & Related papers (2020-08-31T23:15:40Z) - GPT-GNN: Generative Pre-Training of Graph Neural Networks [93.35945182085948]
Graph neural networks (GNNs) have been demonstrated to be powerful in modeling graph-structured data.
We present the GPT-GNN framework to initialize GNNs by generative pre-training.
We show that GPT-GNN significantly outperforms state-of-the-art GNN models without pre-training by up to 9.1% across various downstream tasks.
arXiv Detail & Related papers (2020-06-27T20:12:33Z) - XGNN: Towards Model-Level Explanations of Graph Neural Networks [113.51160387804484]
Graphs neural networks (GNNs) learn node features by aggregating and combining neighbor information.
GNNs are mostly treated as black-boxes and lack human intelligible explanations.
We propose a novel approach, known as XGNN, to interpret GNNs at the model-level.
arXiv Detail & Related papers (2020-06-03T23:52:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.