Large-scale spatiotemporal photonic reservoir computer for image
classification
- URL: http://arxiv.org/abs/2004.02542v1
- Date: Mon, 6 Apr 2020 10:22:31 GMT
- Title: Large-scale spatiotemporal photonic reservoir computer for image
classification
- Authors: Piotr Antonik, Nicolas Marsal, Damien Rontani
- Abstract summary: We propose a scalable photonic architecture for implementation of feedforward and recurrent neural networks to perform the classification of handwritten digits.
Our experiment exploits off-the-shelf optical and electronic components to currently achieve a network size of 16,384 nodes.
- Score: 0.8701566919381222
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a scalable photonic architecture for implementation of feedforward
and recurrent neural networks to perform the classification of handwritten
digits from the MNIST database. Our experiment exploits off-the-shelf optical
and electronic components to currently achieve a network size of 16,384 nodes.
Both network types are designed within the the reservoir computing paradigm
with randomly weighted input and hidden layers. Using various feature
extraction techniques (e.g. histograms of oriented gradients, zoning, Gabor
filters) and a simple training procedure consisting of linear regression and
winner-takes-all decision strategy, we demonstrate numerically and
experimentally that a feedforward network allows for classification error rate
of 1%, which is at the state-of-the-art for experimental implementations and
remains competitive with more advanced algorithmic approaches. We also
investigate recurrent networks in numerical simulations by explicitly
activating the temporal dynamics, and predict a performance improvement over
the feedforward configuration.
Related papers
- Concurrent Training and Layer Pruning of Deep Neural Networks [0.0]
We propose an algorithm capable of identifying and eliminating irrelevant layers of a neural network during the early stages of training.
We employ a structure using residual connections around nonlinear network sections that allow the flow of information through the network once a nonlinear section is pruned.
arXiv Detail & Related papers (2024-06-06T23:19:57Z) - Iterative Soft Shrinkage Learning for Efficient Image Super-Resolution [91.3781512926942]
Image super-resolution (SR) has witnessed extensive neural network designs from CNN to transformer architectures.
This work investigates the potential of network pruning for super-resolution iteration to take advantage of off-the-shelf network designs and reduce the underlying computational overhead.
We propose a novel Iterative Soft Shrinkage-Percentage (ISS-P) method by optimizing the sparse structure of a randomly network at each and tweaking unimportant weights with a small amount proportional to the magnitude scale on-the-fly.
arXiv Detail & Related papers (2023-03-16T21:06:13Z) - Globally Optimal Training of Neural Networks with Threshold Activation
Functions [63.03759813952481]
We study weight decay regularized training problems of deep neural networks with threshold activations.
We derive a simplified convex optimization formulation when the dataset can be shattered at a certain layer of the network.
arXiv Detail & Related papers (2023-03-06T18:59:13Z) - Convolutional Neural Generative Coding: Scaling Predictive Coding to
Natural Images [79.07468367923619]
We develop convolutional neural generative coding (Conv-NGC)
We implement a flexible neurobiologically-motivated algorithm that progressively refines latent state maps.
We study the effectiveness of our brain-inspired neural system on the tasks of reconstruction and image denoising.
arXiv Detail & Related papers (2022-11-22T06:42:41Z) - Pushing the Efficiency Limit Using Structured Sparse Convolutions [82.31130122200578]
We propose Structured Sparse Convolution (SSC), which leverages the inherent structure in images to reduce the parameters in the convolutional filter.
We show that SSC is a generalization of commonly used layers (depthwise, groupwise and pointwise convolution) in efficient architectures''
Architectures based on SSC achieve state-of-the-art performance compared to baselines on CIFAR-10, CIFAR-100, Tiny-ImageNet, and ImageNet classification benchmarks.
arXiv Detail & Related papers (2022-10-23T18:37:22Z) - CCasGNN: Collaborative Cascade Prediction Based on Graph Neural Networks [0.49269463638915806]
Cascade prediction aims at modeling information diffusion in the network.
Recent efforts devoted to combining network structure and sequence features by graph neural networks and recurrent neural networks.
We propose a novel method CCasGNN considering the individual profile, structural features, and sequence information.
arXiv Detail & Related papers (2021-12-07T11:37:36Z) - A Greedy Algorithm for Quantizing Neural Networks [4.683806391173103]
We propose a new computationally efficient method for quantizing the weights of pre- trained neural networks.
Our method deterministically quantizes layers in an iterative fashion with no complicated re-training required.
arXiv Detail & Related papers (2020-10-29T22:53:10Z) - Supervised Learning with First-to-Spike Decoding in Multilayer Spiking
Neural Networks [0.0]
We propose a new supervised learning method that can train multilayer spiking neural networks to solve classification problems.
The proposed learning rule supports multiple spikes fired by hidden neurons, and yet is stable by relying on firstspike responses generated by a deterministic output layer.
We also explore several distinct spike-based encoding strategies in order to form compact representations of input data.
arXiv Detail & Related papers (2020-08-16T15:34:48Z) - Network Adjustment: Channel Search Guided by FLOPs Utilization Ratio [101.84651388520584]
This paper presents a new framework named network adjustment, which considers network accuracy as a function of FLOPs.
Experiments on standard image classification datasets and a wide range of base networks demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2020-04-06T15:51:00Z) - Backprojection for Training Feedforward Neural Networks in the Input and
Feature Spaces [12.323996999894002]
We propose a new algorithm for training feedforward neural networks which is fairly faster than backpropagation.
The proposed algorithm can be used for both input and feature spaces, named as backprojection and kernel backprojection, respectively.
arXiv Detail & Related papers (2020-04-05T20:53:11Z) - MSE-Optimal Neural Network Initialization via Layer Fusion [68.72356718879428]
Deep neural networks achieve state-of-the-art performance for a range of classification and inference tasks.
The use of gradient combined nonvolutionity renders learning susceptible to novel problems.
We propose fusing neighboring layers of deeper networks that are trained with random variables.
arXiv Detail & Related papers (2020-01-28T18:25:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.