giotto-tda: A Topological Data Analysis Toolkit for Machine Learning and
Data Exploration
- URL: http://arxiv.org/abs/2004.02551v2
- Date: Fri, 5 Mar 2021 19:05:57 GMT
- Title: giotto-tda: A Topological Data Analysis Toolkit for Machine Learning and
Data Exploration
- Authors: Guillaume Tauzin, Umberto Lupo, Lewis Tunstall, Julian Burella
P\'erez, Matteo Caorsi, Wojciech Reise, Anibal Medina-Mardones, Alberto
Dassatti and Kathryn Hess
- Abstract summary: giotto-tda is a Python library that integrates high-performance topological data analysis with machine learning.
The library's ability to handle various types of data is rooted in a wide range of preprocessing techniques.
- Score: 4.8353738137338755
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce giotto-tda, a Python library that integrates high-performance
topological data analysis with machine learning via a scikit-learn-compatible
API and state-of-the-art C++ implementations. The library's ability to handle
various types of data is rooted in a wide range of preprocessing techniques,
and its strong focus on data exploration and interpretability is aided by an
intuitive plotting API. Source code, binaries, examples, and documentation can
be found at https://github.com/giotto-ai/giotto-tda.
Related papers
- Cuvis.Ai: An Open-Source, Low-Code Software Ecosystem for Hyperspectral Processing and Classification [0.4038539043067986]
cuvis.ai is an open-source and low-code software ecosystem for data acquisition, preprocessing, and model training.
The package is written in Python and provides wrappers around common machine learning libraries.
arXiv Detail & Related papers (2024-11-18T06:33:40Z) - Deep Fast Machine Learning Utils: A Python Library for Streamlined Machine Learning Prototyping [0.0]
The Deep Fast Machine Learning Utils (DFMLU) library provides tools designed to automate and enhance aspects of machine learning processes.
DFMLU offers functionalities that support model development and data handling.
This manuscript presents an overview of DFMLU's functionalities, providing Python examples for each tool.
arXiv Detail & Related papers (2024-09-14T21:39:17Z) - Causal-learn: Causal Discovery in Python [53.17423883919072]
Causal discovery aims at revealing causal relations from observational data.
$textitcausal-learn$ is an open-source Python library for causal discovery.
arXiv Detail & Related papers (2023-07-31T05:00:35Z) - pyGSL: A Graph Structure Learning Toolkit [14.000763778781547]
pyGSL is a Python library that provides efficient implementations of state-of-the-art graph structure learning models.
pyGSL is written in GPU-friendly ways, allowing one to scale to much larger network tasks.
arXiv Detail & Related papers (2022-11-07T14:23:10Z) - scikit-fda: A Python Package for Functional Data Analysis [0.0]
scikit-fda is a Python package for Functional Data Analysis (FDA)
It provides a comprehensive set of tools for representation, preprocessing, and exploratory analysis of functional data.
arXiv Detail & Related papers (2022-11-04T16:34:03Z) - OmniXAI: A Library for Explainable AI [98.07381528393245]
We introduce OmniXAI, an open-source Python library of eXplainable AI (XAI)
It offers omni-way explainable AI capabilities and various interpretable machine learning techniques.
For practitioners, the library provides an easy-to-use unified interface to generate the explanations for their applications.
arXiv Detail & Related papers (2022-06-01T11:35:37Z) - Deepchecks: A Library for Testing and Validating Machine Learning Models
and Data [8.876608553825227]
Deepchecks is a Python library for comprehensively validating machine learning models and data.
Our goal is to provide an easy-to-use library comprising of many checks related to various types of issues.
arXiv Detail & Related papers (2022-03-16T09:37:22Z) - DataLab: A Platform for Data Analysis and Intervention [96.75253335629534]
DataLab is a unified data-oriented platform that allows users to interactively analyze the characteristics of data.
toolname has features for dataset recommendation and global vision analysis.
So far, DataLab covers 1,715 datasets and 3,583 of its transformed version.
arXiv Detail & Related papers (2022-02-25T18:32:19Z) - PyODDS: An End-to-end Outlier Detection System with Automated Machine
Learning [55.32009000204512]
We present PyODDS, an automated end-to-end Python system for Outlier Detection with Database Support.
Specifically, we define the search space in the outlier detection pipeline, and produce a search strategy within the given search space.
It also provides unified interfaces and visualizations for users with or without data science or machine learning background.
arXiv Detail & Related papers (2020-03-12T03:30:30Z) - MOGPTK: The Multi-Output Gaussian Process Toolkit [71.08576457371433]
We present MOGPTK, a Python package for multi-channel data modelling using Gaussian processes (GP)
The aim of this toolkit is to make multi-output GP (MOGP) models accessible to researchers, data scientists, and practitioners alike.
arXiv Detail & Related papers (2020-02-09T23:34:49Z) - OPFython: A Python-Inspired Optimum-Path Forest Classifier [68.8204255655161]
This paper proposes a Python-based Optimum-Path Forest framework, denoted as OPFython.
As OPFython is a Python-based library, it provides a more friendly environment and a faster prototyping workspace than the C language.
arXiv Detail & Related papers (2020-01-28T15:46:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.