Deep Learning on Chest X-ray Images to Detect and Evaluate Pneumonia
Cases at the Era of COVID-19
- URL: http://arxiv.org/abs/2004.03399v1
- Date: Sun, 5 Apr 2020 21:30:54 GMT
- Title: Deep Learning on Chest X-ray Images to Detect and Evaluate Pneumonia
Cases at the Era of COVID-19
- Authors: Karim Hammoudi and Halim Benhabiles and Mahmoud Melkemi and Fadi
Dornaika and Ignacio Arganda-Carreras and Dominique Collard and Arnaud
Scherpereel
- Abstract summary: Coronavirus disease 2019 (COVID-19) is an infectious disease with first symptoms similar to the flu.
This paper investigates deep learning methods for automatically analyzing query chest X-ray images.
Deep learning models are proposed to detect pneumonia infection cases, notably viral cases.
- Score: 14.693391992808685
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Coronavirus disease 2019 (COVID-19) is an infectious disease with first
symptoms similar to the flu. COVID-19 appeared first in China and very quickly
spreads to the rest of the world, causing then the 2019-20 coronavirus
pandemic. In many cases, this disease causes pneumonia. Since pulmonary
infections can be observed through radiography images, this paper investigates
deep learning methods for automatically analyzing query chest X-ray images with
the hope to bring precision tools to health professionals towards screening the
COVID-19 and diagnosing confirmed patients. In this context, training datasets,
deep learning architectures and analysis strategies have been experimented from
publicly open sets of chest X-ray images. Tailored deep learning models are
proposed to detect pneumonia infection cases, notably viral cases. It is
assumed that viral pneumonia cases detected during an epidemic COVID-19 context
have a high probability to presume COVID-19 infections. Moreover, easy-to-apply
health indicators are proposed for estimating infection status and predicting
patient status from the detected pneumonia cases. Experimental results show
possibilities of training deep learning models over publicly open sets of chest
X-ray images towards screening viral pneumonia. Chest X-ray test images of
COVID-19 infected patients are successfully diagnosed through detection models
retained for their performances. The efficiency of proposed health indicators
is highlighted through simulated scenarios of patients presenting infections
and health problems by combining real and synthetic health data.
Related papers
- Prediction of Pneumonia and COVID-19 Using Deep Neural Networks [0.0]
We propose machine-learning techniques for predicting Pneumonia from chest X-ray images.
DenseNet121 outperforms other models, achieving an accuracy rate of 99.58%.
arXiv Detail & Related papers (2023-08-20T21:26:37Z) - COVID-19 Detection from Chest X-ray Images using Imprinted Weights
Approach [67.05664774727208]
Chest radiography is an alternative screening method for the COVID-19.
Computer-aided diagnosis (CAD) has proven to be a viable solution at low cost and with fast speed.
To address this challenge, we propose the use of a low-shot learning approach named imprinted weights.
arXiv Detail & Related papers (2021-05-04T19:01:40Z) - Pinball-OCSVM for early-stage COVID-19 diagnosis with limited
posteroanterior chest X-ray images [3.4935179780034247]
This research proposes a novel pinball loss function based one-class support vector machine (PB-OCSVM) that can work in presence of limited COVID-19 positive CXR samples.
The performance of the proposed model is compared with conventional OCSVM and existing deep learning models, and the experimental results prove that the proposed model outperformed over state-of-the-art methods.
arXiv Detail & Related papers (2020-10-16T02:34:15Z) - A New Screening Method for COVID-19 based on Ocular Feature Recognition
by Machine Learning Tools [66.20818586629278]
Coronavirus disease 2019 (COVID-19) has affected several million people.
New screening method of analyzing the eye-region images, captured by common CCD and CMOS cameras, could reliably make a rapid risk screening of COVID-19.
arXiv Detail & Related papers (2020-09-04T00:50:27Z) - Integrative Analysis for COVID-19 Patient Outcome Prediction [53.11258640541513]
We combine radiomics of lung opacities and non-imaging features from demographic data, vital signs, and laboratory findings to predict need for intensive care unit admission.
Our methods may also be applied to other lung diseases including but not limited to community acquired pneumonia.
arXiv Detail & Related papers (2020-07-20T19:08:50Z) - Improving performance of CNN to predict likelihood of COVID-19 using
chest X-ray images with preprocessing algorithms [0.3180570080674292]
The study demonstrates the feasibility of developing a computer-aided diagnosis scheme of chest X-ray images.
A dataset of 8,474 chest X-ray images is used to train and test the CNN-based CAD scheme.
The testing results achieve 94.0% of overall accuracy in classifying three classes and 98.6% accuracy in detecting Covid-19 infected cases.
arXiv Detail & Related papers (2020-06-11T16:45:46Z) - Predicting COVID-19 Pneumonia Severity on Chest X-ray with Deep Learning [57.00601760750389]
We present a severity score prediction model for COVID-19 pneumonia for frontal chest X-ray images.
Such a tool can gauge severity of COVID-19 lung infections that can be used for escalation or de-escalation of care.
arXiv Detail & Related papers (2020-05-24T23:13:16Z) - Diagnosis of Coronavirus Disease 2019 (COVID-19) with Structured Latent
Multi-View Representation Learning [48.05232274463484]
Recently, the outbreak of Coronavirus Disease 2019 (COVID-19) has spread rapidly across the world.
Due to the large number of affected patients and heavy labor for doctors, computer-aided diagnosis with machine learning algorithm is urgently needed.
In this study, we propose to conduct the diagnosis of COVID-19 with a series of features extracted from CT images.
arXiv Detail & Related papers (2020-05-06T15:19:15Z) - CoroNet: A deep neural network for detection and diagnosis of COVID-19
from chest x-ray images [0.0]
CoroNet is a Deep Conceptional Neural Network model to automatically detect COVID-19 infection from chest X-ray images.
The proposed model achieved an overall accuracy of 89.6% and the precision and recall rate for COVID-19 cases are 93% and 98.2%.
arXiv Detail & Related papers (2020-04-10T07:46:07Z) - Viral Pneumonia Screening on Chest X-ray Images Using Confidence-Aware
Anomaly Detection [86.81773672627406]
Clusters of viral pneumonia during a short period of time may be a harbinger of an outbreak or pandemic, like SARS, MERS, and recent COVID-19.
Rapid and accurate detection of viral pneumonia using chest X-ray can be significantly useful in large-scale screening and epidemic prevention.
Viral pneumonia often have diverse causes and exhibit notably different visual appearances on X-ray images.
arXiv Detail & Related papers (2020-03-27T11:32:18Z) - Deep Learning System to Screen Coronavirus Disease 2019 Pneumonia [10.225348237731787]
The manifestations of computed tomography (CT) imaging of COVID-19 had their own characteristics, which are different from other types of viral pneumonia, such as Influenza-A viral pneumonia.
This study aimed to establish an early screening model to distinguish COVID-19 pneumonia from Influenza-A viral pneumonia and healthy cases with pulmonary CT images using deep learning techniques.
arXiv Detail & Related papers (2020-02-21T14:44:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.