Transformers to Learn Hierarchical Contexts in Multiparty Dialogue for
Span-based Question Answering
- URL: http://arxiv.org/abs/2004.03561v2
- Date: Sat, 23 May 2020 04:35:45 GMT
- Title: Transformers to Learn Hierarchical Contexts in Multiparty Dialogue for
Span-based Question Answering
- Authors: Changmao Li, Jinho D. Choi
- Abstract summary: We introduce a novel approach to transformers that learns hierarchical representations in multiparty dialogue.
Our approach is evaluated on the FriendsQA dataset and shows improvements of 3.8% and 1.4% over the two state-of-the-art transformer models BERT and RoBERTa.
- Score: 20.294478273161303
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce a novel approach to transformers that learns hierarchical
representations in multiparty dialogue. First, three language modeling tasks
are used to pre-train the transformers, token- and utterance-level language
modeling and utterance order prediction, that learn both token and utterance
embeddings for better understanding in dialogue contexts. Then, multi-task
learning between the utterance prediction and the token span prediction is
applied to fine-tune for span-based question answering (QA). Our approach is
evaluated on the FriendsQA dataset and shows improvements of 3.8% and 1.4% over
the two state-of-the-art transformer models, BERT and RoBERTa, respectively.
Related papers
- Speech Recognition Transformers: Topological-lingualism Perspective [5.874509965718588]
The paper presents a comprehensive survey of transformer techniques oriented in speech modality.
The main contents of this survey include (1) background of traditional ASR, end-to-end transformer ecosystem, and speech transformers (2) foundational models in a speech via lingualism paradigm.
arXiv Detail & Related papers (2024-08-27T12:15:43Z) - APoLLo: Unified Adapter and Prompt Learning for Vision Language Models [58.9772868980283]
We present APoLLo, a unified multi-modal approach that combines Adapter and Prompt learning for Vision-Language models.
APoLLo achieves a relative gain up to 6.03% over MaPLe (SOTA) on novel classes for 10 diverse image recognition datasets.
arXiv Detail & Related papers (2023-12-04T01:42:09Z) - Channel-aware Decoupling Network for Multi-turn Dialogue Comprehension [81.47133615169203]
We propose compositional learning for holistic interaction across utterances beyond the sequential contextualization from PrLMs.
We employ domain-adaptive training strategies to help the model adapt to the dialogue domains.
Experimental results show that our method substantially boosts the strong PrLM baselines in four public benchmark datasets.
arXiv Detail & Related papers (2023-01-10T13:18:25Z) - Paragraph-based Transformer Pre-training for Multi-Sentence Inference [99.59693674455582]
We show that popular pre-trained transformers perform poorly when used for fine-tuning on multi-candidate inference tasks.
We then propose a new pre-training objective that models the paragraph-level semantics across multiple input sentences.
arXiv Detail & Related papers (2022-05-02T21:41:14Z) - DialogVED: A Pre-trained Latent Variable Encoder-Decoder Model for
Dialog Response Generation [80.45816053153722]
DialogVED introduces continuous latent variables into the enhanced encoder-decoder pre-training framework to increase the relevance and diversity of responses.
We conduct experiments on PersonaChat, DailyDialog, and DSTC7-AVSD benchmarks for response generation.
arXiv Detail & Related papers (2022-04-27T16:18:15Z) - Towards Generalized Models for Task-oriented Dialogue Modeling on Spoken
Conversations [22.894541507068933]
This paper presents our approach to build generalized models for the Knowledge-grounded Task-oriented Dialogue Modeling on Spoken Conversations Challenge of DSTC-10.
We employ extensive data augmentation strategies on written data, including artificial error injection and round-trip text-speech transformation.
Our approach ranks third on the objective evaluation and second on the final official human evaluation.
arXiv Detail & Related papers (2022-03-08T12:26:57Z) - DialogBERT: Discourse-Aware Response Generation via Learning to Recover
and Rank Utterances [18.199473005335093]
This paper presents DialogBERT, a novel conversational response generation model that enhances previous PLM-based dialogue models.
To efficiently capture the discourse-level coherence among utterances, we propose two training objectives, including masked utterance regression.
Experiments on three multi-turn conversation datasets show that our approach remarkably outperforms the baselines.
arXiv Detail & Related papers (2020-12-03T09:06:23Z) - Filling the Gap of Utterance-aware and Speaker-aware Representation for
Multi-turn Dialogue [76.88174667929665]
A multi-turn dialogue is composed of multiple utterances from two or more different speaker roles.
In the existing retrieval-based multi-turn dialogue modeling, the pre-trained language models (PrLMs) as encoder represent the dialogues coarsely.
We propose a novel model to fill such a gap by modeling the effective utterance-aware and speaker-aware representations entailed in a dialogue history.
arXiv Detail & Related papers (2020-09-14T15:07:19Z) - Video-Grounded Dialogues with Pretrained Generation Language Models [88.15419265622748]
We leverage the power of pre-trained language models for improving video-grounded dialogue.
We propose a framework by formulating sequence-to-grounded dialogue tasks as a sequence-to-grounded task.
Our framework allows fine-tuning language models to capture dependencies across multiple modalities.
arXiv Detail & Related papers (2020-06-27T08:24:26Z) - An Empirical Investigation of Pre-Trained Transformer Language Models
for Open-Domain Dialogue Generation [23.343006562849126]
We present an empirical investigation of pre-trained Transformer-based auto-regressive language models for the task of open-domain dialogue generation.
Training paradigm of pre-training and fine-tuning is employed to conduct learning.
Experiments are conducted on the typical single-turn and multi-turn dialogue corpora such as Weibo, Douban, Reddit, DailyDialog, and Persona-Chat.
arXiv Detail & Related papers (2020-03-09T15:20:21Z) - Hierarchical Transformer Network for Utterance-level Emotion Recognition [0.0]
We address some challenges in utter-ance-level emotion recognition (ULER)
Unlike the traditional text classification problem, this task is supported by a limited number of datasets.
We use a pretrained language model bidirectional encoder representa-tions from transformers (BERT) as the lower-level transformer.
In addition, we add speaker embeddings to the model for the first time, which enables our model to capture the in-teraction between speakers.
arXiv Detail & Related papers (2020-02-18T13:44:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.