A Field Theory Study of Entanglement Wedge Cross Section: Odd Entropy
- URL: http://arxiv.org/abs/2004.04163v1
- Date: Wed, 8 Apr 2020 18:00:01 GMT
- Title: A Field Theory Study of Entanglement Wedge Cross Section: Odd Entropy
- Authors: Ali Mollabashi, Kotaro Tamaoka
- Abstract summary: We study odd entanglement entropy holographically dual to the entanglement wedge cross section.
In particular, we show that large amounts of quantum correlations ensure the odd entropy to be larger than von Neumann entropy.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study odd entanglement entropy (odd entropy in short), a candidate of
measure for mixed states holographically dual to the entanglement wedge cross
section, in two-dimensional free scalar field theories. Our study is restricted
to Gaussian states of scale-invariant theories as well as their finite
temperature generalizations, for which we show that the odd entropy is a
well-defined measure for mixed states. Motivated from holographic results, the
difference between odd and von Neumann entropy is also studied. In particular,
we show that large amounts of quantum correlations ensure the odd entropy to be
larger than von Neumann entropy, which is qualitatively consistent with the
holographic CFT. In general cases, we also find that this difference is not
even a monotonic function with respect to size of (and distance between)
subsystems.
Related papers
- Gaussian Entanglement Measure: Applications to Multipartite Entanglement
of Graph States and Bosonic Field Theory [50.24983453990065]
An entanglement measure based on the Fubini-Study metric has been recently introduced by Cocchiarella and co-workers.
We present the Gaussian Entanglement Measure (GEM), a generalization of geometric entanglement measure for multimode Gaussian states.
By providing a computable multipartite entanglement measure for systems with a large number of degrees of freedom, we show that our definition can be used to obtain insights into a free bosonic field theory.
arXiv Detail & Related papers (2024-01-31T15:50:50Z) - A covariant regulator for entanglement entropy: proofs of the Bekenstein
bound and QNEC [0.0]
We show that a notion of entropy differences can be rigorously defined in quantum field theory in a general curved spacetime.
We introduce a novel, covariant regulator for the entropy based on the modular crossed product.
This regulator associates a type II von Neumann algebra to each spacetime subregion, resulting in well-defined renormalized entropies.
arXiv Detail & Related papers (2023-12-12T18:07:13Z) - Local Intrinsic Dimensional Entropy [29.519376857728325]
Most entropy measures depend on the spread of the probability distribution over the sample space $mathcalX|$.
In this work, we question the role of cardinality and distribution spread in defining entropy measures for continuous spaces.
We find that the average value of the local intrinsic dimension of a distribution, denoted as ID-Entropy, can serve as a robust entropy measure for continuous spaces.
arXiv Detail & Related papers (2023-04-05T04:36:07Z) - Universal features of entanglement entropy in the honeycomb Hubbard
model [44.99833362998488]
This paper introduces a new method to compute the R'enyi entanglement entropy in auxiliary-field quantum Monte Carlo simulations.
We demonstrate the efficiency of this method by extracting, for the first time, universal subleading logarithmic terms in a two dimensional model of interacting fermions.
arXiv Detail & Related papers (2022-11-08T15:52:16Z) - Observational entropy, coarse quantum states, and Petz recovery:
information-theoretic properties and bounds [1.7205106391379026]
We study the mathematical properties of observational entropy from an information-theoretic viewpoint.
We present new bounds on observational entropy applying in general, as well as bounds and identities related to sequential and post-processed measurements.
arXiv Detail & Related papers (2022-09-08T13:22:15Z) - Subregion Spectrum Form Factor via Pseudo Entropy [0.0]
We consider a transition matrix between the thermofield double state and its time-evolved state in two-dimensional field theories.
We show that the real part of the pseudo entropy behaves similarly to the spectral form factor.
arXiv Detail & Related papers (2021-09-01T13:17:19Z) - Aspects of Pseudo Entropy in Field Theories [0.0]
We numerically analyze a class of free scalar field theories and the XY spin model.
This reveals the basic properties of pseudo entropy in many-body systems.
We find that the non-positivity of the difference can be violated only if the initial and final states belong to different quantum phases.
arXiv Detail & Related papers (2021-06-06T13:25:35Z) - Entanglement Entropy of Non-Hermitian Free Fermions [59.54862183456067]
We study the entanglement properties of non-Hermitian free fermionic models with translation symmetry.
Our results show that the entanglement entropy has a logarithmic correction to the area law in both one-dimensional and two-dimensional systems.
arXiv Detail & Related papers (2021-05-20T14:46:09Z) - Catalytic Transformations of Pure Entangled States [62.997667081978825]
Entanglement entropy is the von Neumann entropy of quantum entanglement of pure states.
The relation between entanglement entropy and entanglement distillation has been known only for the setting, and the meaning of entanglement entropy in the single-copy regime has so far remained open.
Our results imply that entanglement entropy quantifies the amount of entanglement available in a bipartite pure state to be used for quantum information processing, giving results an operational meaning also in entangled single-copy setup.
arXiv Detail & Related papers (2021-02-22T16:05:01Z) - Relative Entropy of Random States and Black Holes [0.0]
We study the relative entropy of highly excited quantum states.
We develop a large-N diagrammatic technique for the relative entropy.
We find that black hole microstates are distinguishable even when the observer has arbitrarily small access to the quantum state.
arXiv Detail & Related papers (2021-02-09T19:00:01Z) - Long-distance entanglement of purification and reflected entropy in
conformal field theory [58.84597116744021]
We study entanglement properties of mixed states in quantum field theory via entanglement of purification and reflected entropy.
We find an elementary proof that the decay of both, the entanglement of purification and reflected entropy, is enhanced with respect to the mutual information behaviour.
arXiv Detail & Related papers (2021-01-29T19:00:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.