Learning to Scale Multilingual Representations for Vision-Language Tasks
- URL: http://arxiv.org/abs/2004.04312v2
- Date: Thu, 27 Aug 2020 19:01:28 GMT
- Title: Learning to Scale Multilingual Representations for Vision-Language Tasks
- Authors: Andrea Burns, Donghyun Kim, Derry Wijaya, Kate Saenko, Bryan A.
Plummer
- Abstract summary: The effectiveness of SMALR is demonstrated with ten diverse languages, over twice the number supported in vision-language tasks to date.
We evaluate on multilingual image-sentence retrieval and outperform prior work by 3-4% with less than 1/5th the training parameters compared to other word embedding methods.
- Score: 51.27839182889422
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Current multilingual vision-language models either require a large number of
additional parameters for each supported language, or suffer performance
degradation as languages are added. In this paper, we propose a Scalable
Multilingual Aligned Language Representation (SMALR) that supports many
languages with few model parameters without sacrificing downstream task
performance. SMALR learns a fixed size language-agnostic representation for
most words in a multilingual vocabulary, keeping language-specific features for
just a few. We use a masked cross-language modeling loss to align features with
context from other languages. Additionally, we propose a cross-lingual
consistency module that ensures predictions made for a query and its machine
translation are comparable. The effectiveness of SMALR is demonstrated with ten
diverse languages, over twice the number supported in vision-language tasks to
date. We evaluate on multilingual image-sentence retrieval and outperform prior
work by 3-4% with less than 1/5th the training parameters compared to other
word embedding methods.
Related papers
- The Less the Merrier? Investigating Language Representation in
Multilingual Models [8.632506864465501]
We investigate the linguistic representation of different languages in multilingual models.
We observe from our experiments that community-centered models perform better at distinguishing between languages in the same family for low-resource languages.
arXiv Detail & Related papers (2023-10-20T02:26:34Z) - Soft Language Clustering for Multilingual Model Pre-training [57.18058739931463]
We propose XLM-P, which contextually retrieves prompts as flexible guidance for encoding instances conditionally.
Our XLM-P enables (1) lightweight modeling of language-invariant and language-specific knowledge across languages, and (2) easy integration with other multilingual pre-training methods.
arXiv Detail & Related papers (2023-06-13T08:08:08Z) - Are Multilingual Models Effective in Code-Switching? [57.78477547424949]
We study the effectiveness of multilingual language models to understand their capability and adaptability to the mixed-language setting.
Our findings suggest that pre-trained multilingual models do not necessarily guarantee high-quality representations on code-switching.
arXiv Detail & Related papers (2021-03-24T16:20:02Z) - How Good is Your Tokenizer? On the Monolingual Performance of
Multilingual Language Models [96.32118305166412]
We study a set of nine typologically diverse languages with readily available pretrained monolingual models on a set of five diverse monolingual downstream tasks.
We find that languages which are adequately represented in the multilingual model's vocabulary exhibit negligible performance decreases over their monolingual counterparts.
arXiv Detail & Related papers (2020-12-31T14:11:00Z) - UNKs Everywhere: Adapting Multilingual Language Models to New Scripts [103.79021395138423]
Massively multilingual language models such as multilingual BERT (mBERT) and XLM-R offer state-of-the-art cross-lingual transfer performance on a range of NLP tasks.
Due to their limited capacity and large differences in pretraining data, there is a profound performance gap between resource-rich and resource-poor target languages.
We propose novel data-efficient methods that enable quick and effective adaptation of pretrained multilingual models to such low-resource languages and unseen scripts.
arXiv Detail & Related papers (2020-12-31T11:37:28Z) - CoSDA-ML: Multi-Lingual Code-Switching Data Augmentation for Zero-Shot
Cross-Lingual NLP [68.2650714613869]
We propose a data augmentation framework to generate multi-lingual code-switching data to fine-tune mBERT.
Compared with the existing work, our method does not rely on bilingual sentences for training, and requires only one training process for multiple target languages.
arXiv Detail & Related papers (2020-06-11T13:15:59Z) - GLUECoS : An Evaluation Benchmark for Code-Switched NLP [17.066725832825423]
We present an evaluation benchmark, GLUECoS, for code-switched languages.
We present results on several NLP tasks in English-Hindi and English-Spanish.
We fine-tune multilingual models on artificially generated code-switched data.
arXiv Detail & Related papers (2020-04-26T13:28:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.