k-Nearest Neighbour Classifiers: 2nd Edition (with Python examples)
- URL: http://arxiv.org/abs/2004.04523v2
- Date: Wed, 29 Apr 2020 11:07:06 GMT
- Title: k-Nearest Neighbour Classifiers: 2nd Edition (with Python examples)
- Authors: Padraig Cunningham, Sarah Jane Delany
- Abstract summary: Nearest Neighbour classification is achieved by identifying the nearest neighbours to a query example and using those neighbours to determine the class of the query.
This paper presents an overview of techniques for Nearest Neighbour classification focusing on; mechanisms for assessing similarity (distance), computational issues in identifying nearest neighbours and mechanisms for reducing the dimension of the data.
- Score: 2.639737913330821
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Perhaps the most straightforward classifier in the arsenal or machine
learning techniques is the Nearest Neighbour Classifier -- classification is
achieved by identifying the nearest neighbours to a query example and using
those neighbours to determine the class of the query. This approach to
classification is of particular importance because issues of poor run-time
performance is not such a problem these days with the computational power that
is available. This paper presents an overview of techniques for Nearest
Neighbour classification focusing on; mechanisms for assessing similarity
(distance), computational issues in identifying nearest neighbours and
mechanisms for reducing the dimension of the data.
This paper is the second edition of a paper previously published as a
technical report. Sections on similarity measures for time-series, retrieval
speed-up and intrinsic dimensionality have been added. An Appendix is included
providing access to Python code for the key methods.
Related papers
- Mitigating Word Bias in Zero-shot Prompt-based Classifiers [55.60306377044225]
We show that matching class priors correlates strongly with the oracle upper bound performance.
We also demonstrate large consistent performance gains for prompt settings over a range of NLP tasks.
arXiv Detail & Related papers (2023-09-10T10:57:41Z) - Divide&Classify: Fine-Grained Classification for City-Wide Visual Place
Recognition [21.039399444257807]
Divide&Classify (D&C) enjoys the fast inference of classification solutions and an accuracy competitive with retrieval methods on the fine-grained, city-wide setting.
We show that D&C can be paired with existing retrieval pipelines to speed up computations by over 20 times while increasing their recall.
arXiv Detail & Related papers (2023-07-17T11:57:04Z) - Retrieval-Augmented Classification with Decoupled Representation [31.662843145399044]
We propose a $k$-nearest-neighbor (KNN)-based method for retrieval augmented classifications.
We find that shared representation for classification and retrieval hurts performance and leads to training instability.
We evaluate our method on a wide range of classification datasets.
arXiv Detail & Related papers (2023-03-23T06:33:06Z) - Classifying with Uncertain Data Envelopment Analysis [0.0]
We propose a new classification scheme premised on the reality of imperfect data.
Our model uses uncertain data envelopment analysis to define a classification's proximity to equitable efficiency.
We conclude by classifying the thirty stocks in the Dow Jones Industrial average into performant tiers and by classifying prostate treatments into clinically effectual categories.
arXiv Detail & Related papers (2022-09-02T13:41:19Z) - ReAct: Temporal Action Detection with Relational Queries [84.76646044604055]
This work aims at advancing temporal action detection (TAD) using an encoder-decoder framework with action queries.
We first propose a relational attention mechanism in the decoder, which guides the attention among queries based on their relations.
Lastly, we propose to predict the localization quality of each action query at inference in order to distinguish high-quality queries.
arXiv Detail & Related papers (2022-07-14T17:46:37Z) - Riemannian classification of EEG signals with missing values [67.90148548467762]
This paper proposes two strategies to handle missing data for the classification of electroencephalograms.
The first approach estimates the covariance from imputed data with the $k$-nearest neighbors algorithm; the second relies on the observed data by leveraging the observed-data likelihood within an expectation-maximization algorithm.
As results show, the proposed strategies perform better than the classification based on observed data and allow to keep a high accuracy even when the missing data ratio increases.
arXiv Detail & Related papers (2021-10-19T14:24:50Z) - A Framework for Multi-View Classification of Features [6.660458629649826]
In solving the data classification problems, when the feature set is too large, typical approaches will not be able to solve the problem.
In this research, an innovative framework for multi-view ensemble classification, inspired by the problem of object recognition in the multiple views theory of humans, is proposed.
arXiv Detail & Related papers (2021-08-02T16:27:43Z) - Cross-Domain Generalization Through Memorization: A Study of Nearest
Neighbors in Neural Duplicate Question Detection [72.01292864036087]
Duplicate question detection (DQD) is important to increase efficiency of community and automatic question answering systems.
We leverage neural representations and study nearest neighbors for cross-domain generalization in DQD.
We observe robust performance of this method in different cross-domain scenarios of StackExchange, Spring and Quora datasets.
arXiv Detail & Related papers (2020-11-22T19:19:33Z) - Adversarial Examples for $k$-Nearest Neighbor Classifiers Based on
Higher-Order Voronoi Diagrams [69.4411417775822]
Adversarial examples are a widely studied phenomenon in machine learning models.
We propose an algorithm for evaluating the adversarial robustness of $k$-nearest neighbor classification.
arXiv Detail & Related papers (2020-11-19T08:49:10Z) - K-Nearest Neighbour and Support Vector Machine Hybrid Classification [0.0]
The technique consists of using K-Nearest Neighbour Classification for test samples satisfying a proximity condition.
For every separated test sample, a Support Vector Machine is trained on the sifted training set patterns associated with it, and classification for the test sample is done.
arXiv Detail & Related papers (2020-06-28T15:26:56Z) - Few-Shot Open-Set Recognition using Meta-Learning [72.15940446408824]
The problem of open-set recognition is considered.
A new oPen sEt mEta LEaRning (PEELER) algorithm is introduced.
arXiv Detail & Related papers (2020-05-27T23:49:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.