MLR: A Two-stage Conversational Query Rewriting Model with Multi-task
Learning
- URL: http://arxiv.org/abs/2004.05812v1
- Date: Mon, 13 Apr 2020 08:04:49 GMT
- Title: MLR: A Two-stage Conversational Query Rewriting Model with Multi-task
Learning
- Authors: Shuangyong Song, Chao Wang, Qianqian Xie, Xinxing Zu, Huan Chen,
Haiqing Chen
- Abstract summary: We propose the conversational query rewriting model - MLR, which is a Multi-task model on sequence Labeling and query Rewriting.
MLR reformulates the multi-turn conversational queries into a single turn query, which conveys the true intention of users concisely.
To train our model, we construct a new Chinese query rewriting dataset and conduct experiments on it.
- Score: 16.88648782206587
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Conversational context understanding aims to recognize the real intention of
user from the conversation history, which is critical for building the dialogue
system. However, the multi-turn conversation understanding in open domain is
still quite challenging, which requires the system extracting the important
information and resolving the dependencies in contexts among a variety of open
topics. In this paper, we propose the conversational query rewriting model -
MLR, which is a Multi-task model on sequence Labeling and query Rewriting. MLR
reformulates the multi-turn conversational queries into a single turn query,
which conveys the true intention of users concisely and alleviates the
difficulty of the multi-turn dialogue modeling. In the model, we formulate the
query rewriting as a sequence generation problem and introduce word category
information via the auxiliary word category label predicting task. To train our
model, we construct a new Chinese query rewriting dataset and conduct
experiments on it. The experimental results show that our model outperforms
compared models, and prove the effectiveness of the word category information
in improving the rewriting performance.
Related papers
- IRLab@iKAT24: Learned Sparse Retrieval with Multi-aspect LLM Query Generation for Conversational Search [6.974395116689502]
iKAT 2024 focuses on advancing conversational assistants, able to adapt their interaction and responses from personalized user knowledge.
The track incorporates a Personal Textual Knowledge Base (PTKB) alongside Conversational AI tasks, such as passage ranking and response generation.
arXiv Detail & Related papers (2024-11-22T05:18:35Z) - Aligning Query Representation with Rewritten Query and Relevance Judgments in Conversational Search [32.35446999027349]
We leverage both rewritten queries and relevance judgments in the conversational search data to train a better query representation model.
The proposed model -- Query Representation Alignment Conversational Retriever, QRACDR, is tested on eight datasets.
arXiv Detail & Related papers (2024-07-29T17:14:36Z) - Query-oriented Data Augmentation for Session Search [71.84678750612754]
We propose query-oriented data augmentation to enrich search logs and empower the modeling.
We generate supplemental training pairs by altering the most important part of a search context.
We develop several strategies to alter the current query, resulting in new training data with varying degrees of difficulty.
arXiv Detail & Related papers (2024-07-04T08:08:33Z) - Generating Multi-Aspect Queries for Conversational Search [6.974395116689502]
We show that the same retrieval model would perform better with more than one rewritten query by 85% in terms of nDCG@3.
We propose a multi-aspect query generation and retrieval framework, called MQ4CS.
arXiv Detail & Related papers (2024-03-28T10:40:22Z) - Evaluating Large Language Models in Semantic Parsing for Conversational
Question Answering over Knowledge Graphs [6.869834883252353]
This paper evaluates the performance of large language models that have not been explicitly pre-trained on this task.
Our results demonstrate that large language models are capable of generating graph queries from dialogues.
arXiv Detail & Related papers (2024-01-03T12:28:33Z) - SSP: Self-Supervised Post-training for Conversational Search [63.28684982954115]
We propose fullmodel (model) which is a new post-training paradigm with three self-supervised tasks to efficiently initialize the conversational search model.
To verify the effectiveness of our proposed method, we apply the conversational encoder post-trained by model on the conversational search task using two benchmark datasets: CAsT-19 and CAsT-20.
arXiv Detail & Related papers (2023-07-02T13:36:36Z) - End-to-end Knowledge Retrieval with Multi-modal Queries [50.01264794081951]
ReMuQ requires a system to retrieve knowledge from a large corpus by integrating contents from both text and image queries.
We introduce a retriever model ReViz'' that can directly process input text and images to retrieve relevant knowledge in an end-to-end fashion.
We demonstrate superior performance in retrieval on two datasets under zero-shot settings.
arXiv Detail & Related papers (2023-06-01T08:04:12Z) - Conversational Query Rewriting with Self-supervised Learning [36.392717968127016]
Conversational Query Rewriting (CQR) aims to simplify the multi-turn dialogue modeling into a single-turn problem by explicitly rewriting the conversational query into a self-contained utterance.
Existing approaches rely on massive supervised training data, which is labor-intensive to annotate.
We propose to construct a large-scale CQR dataset automatically via self-supervised learning, which does not need human annotation.
arXiv Detail & Related papers (2021-02-09T08:57:53Z) - Reasoning in Dialog: Improving Response Generation by Context Reading
Comprehension [49.92173751203827]
In multi-turn dialog, utterances do not always take the full form of sentences.
We propose to improve the response generation performance by examining the model's ability to answer a reading comprehension question.
arXiv Detail & Related papers (2020-12-14T10:58:01Z) - Learning an Effective Context-Response Matching Model with
Self-Supervised Tasks for Retrieval-based Dialogues [88.73739515457116]
We introduce four self-supervised tasks including next session prediction, utterance restoration, incoherence detection and consistency discrimination.
We jointly train the PLM-based response selection model with these auxiliary tasks in a multi-task manner.
Experiment results indicate that the proposed auxiliary self-supervised tasks bring significant improvement for multi-turn response selection.
arXiv Detail & Related papers (2020-09-14T08:44:46Z) - Query Resolution for Conversational Search with Limited Supervision [63.131221660019776]
We propose QuReTeC (Query Resolution by Term Classification), a neural query resolution model based on bidirectional transformers.
We show that QuReTeC outperforms state-of-the-art models, and furthermore, that our distant supervision method can be used to substantially reduce the amount of human-curated data required to train QuReTeC.
arXiv Detail & Related papers (2020-05-24T11:37:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.