Transfer Learning with Deep Convolutional Neural Network (CNN) for
Pneumonia Detection using Chest X-ray
- URL: http://arxiv.org/abs/2004.06578v1
- Date: Tue, 14 Apr 2020 15:03:48 GMT
- Title: Transfer Learning with Deep Convolutional Neural Network (CNN) for
Pneumonia Detection using Chest X-ray
- Authors: Tawsifur Rahman, Muhammad E. H. Chowdhury, Amith Khandakar, Khandaker
R. Islam, Khandaker F. Islam, Zaid B. Mahbub, Muhammad A. Kadir, Saad Kashem
- Abstract summary: The aim of this paper is to automatically detect bacterial and viral pneumonia using digital x-ray images.
Four different pre-trained deep Convolutional Neural Network (CNN)- AlexNet, ResNet18, DenseNet201, and SqueezeNet were used for transfer learning.
The classification accuracy of normal and pneumonia images, bacterial and viral pneumonia images, and normal, bacterial and viral pneumonia were 98%, 95%, and 93.3% respectively.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Pneumonia is a life-threatening disease, which occurs in the lungs caused by
either bacterial or viral infection. It can be life-endangering if not acted
upon in the right time and thus an early diagnosis of pneumonia is vital. The
aim of this paper is to automatically detect bacterial and viral pneumonia
using digital x-ray images. It provides a detailed report on advances made in
making accurate detection of pneumonia and then presents the methodology
adopted by the authors. Four different pre-trained deep Convolutional Neural
Network (CNN)- AlexNet, ResNet18, DenseNet201, and SqueezeNet were used for
transfer learning. 5247 Bacterial, viral and normal chest x-rays images
underwent preprocessing techniques and the modified images were trained for the
transfer learning based classification task. In this work, the authors have
reported three schemes of classifications: normal vs pneumonia, bacterial vs
viral pneumonia and normal, bacterial and viral pneumonia. The classification
accuracy of normal and pneumonia images, bacterial and viral pneumonia images,
and normal, bacterial and viral pneumonia were 98%, 95%, and 93.3%
respectively. This is the highest accuracy in any scheme than the accuracies
reported in the literature. Therefore, the proposed study can be useful in
faster-diagnosing pneumonia by the radiologist and can help in the fast airport
screening of pneumonia patients.
Related papers
- Pneumonia Detection on chest X-ray images Using Ensemble of Deep
Convolutional Neural Networks [7.232767871756102]
This paper presents a computer-aided classification of pneumonia, coined as Ensemble Learning (EL), to simplify the diagnosis process on chest X-ray images.
Our proposal is based on Convolutional Neural Network (CNN) models, which are pre-trained CNN models that have been recently employed to enhance the performance of many medical tasks instead of training CNN models from scratch.
The proposed EL approach outperforms other existing state-of-the-art methods, and it obtains an accuracy of 93.91% and a F1-Score of 93.88% on the testing phase.
arXiv Detail & Related papers (2023-12-13T08:28:21Z) - Prediction of Pneumonia and COVID-19 Using Deep Neural Networks [0.0]
We propose machine-learning techniques for predicting Pneumonia from chest X-ray images.
DenseNet121 outperforms other models, achieving an accuracy rate of 99.58%.
arXiv Detail & Related papers (2023-08-20T21:26:37Z) - A Comparison Study of Deep CNN Architecture in Detecting of Pneumonia [0.0]
Pneumonia, a respiratory infection brought on by bacteria or viruses, affects a large number of people.
Deep convolutional neural network to classify plant diseases based on images and tested its performance.
DenseNet201 achieves state-of-the-art performance with a significantly a smaller number of parameters and within a reasonable computing time.
arXiv Detail & Related papers (2022-12-30T14:37:32Z) - COVID-19 Detection from Chest X-ray Images using Imprinted Weights
Approach [67.05664774727208]
Chest radiography is an alternative screening method for the COVID-19.
Computer-aided diagnosis (CAD) has proven to be a viable solution at low cost and with fast speed.
To address this challenge, we propose the use of a low-shot learning approach named imprinted weights.
arXiv Detail & Related papers (2021-05-04T19:01:40Z) - In-Line Image Transformations for Imbalanced, Multiclass Computer Vision
Classification of Lung Chest X-Rays [91.3755431537592]
This study aims to leverage a body of literature in order to apply image transformations that would serve to balance the lack of COVID-19 LCXR data.
Deep learning techniques such as convolutional neural networks (CNNs) are able to select features that distinguish between healthy and disease states.
This study utilizes a simple CNN architecture for high-performance multiclass LCXR classification at 94 percent accuracy.
arXiv Detail & Related papers (2021-04-06T02:01:43Z) - Predicting Pneumonia and Region Detection from X-Ray Images using Deep
Neural Network [0.0]
Pneumonia is an infection caused by both bacteria and viruses through the inflammation of a person's lung air sacs.
In this paper, an algorithm was proposed that receives x-ray images as input and verifies whether this patient is infected by Pneumonia.
The model has achieved an accuracy of 90.6 percent which confirms that the model is effective.
arXiv Detail & Related papers (2021-01-19T16:43:05Z) - An ensemble-based approach by fine-tuning the deep transfer learning
models to classify pneumonia from chest X-ray images [0.0]
More than 250,000 individuals in the United States, mainly adults, are diagnosed with pneumonia each year, and 50,000 die from the disease.
It is not uncommon to overlook pneumonia detection for a well-trained radiologist, which triggers the need for improvement in the diagnosis's accuracy.
We trained, fine-tuned the state-of-the-art deep learning models such as InceptionResNet, MobileNetV2, Xception, DenseNet201, and ResNet152V2 to classify pneumonia accurately.
arXiv Detail & Related papers (2020-11-11T04:50:06Z) - M3Lung-Sys: A Deep Learning System for Multi-Class Lung Pneumonia
Screening from CT Imaging [85.00066186644466]
We propose a Multi-task Multi-slice Deep Learning System (M3Lung-Sys) for multi-class lung pneumonia screening from CT imaging.
In addition to distinguish COVID-19 from Healthy, H1N1, and CAP cases, our M 3 Lung-Sys also be able to locate the areas of relevant lesions.
arXiv Detail & Related papers (2020-10-07T06:22:24Z) - Deep Learning for Automatic Pneumonia Detection [72.55423549641714]
Pneumonia is the leading cause of death among young children and one of the top mortality causes worldwide.
Computer-aided diagnosis systems showed the potential for improving diagnostic accuracy.
We develop the computational approach for pneumonia regions detection based on single-shot detectors, squeeze-and-excitation deep convolution neural networks, augmentations and multi-task learning.
arXiv Detail & Related papers (2020-05-28T10:54:34Z) - Predicting COVID-19 Pneumonia Severity on Chest X-ray with Deep Learning [57.00601760750389]
We present a severity score prediction model for COVID-19 pneumonia for frontal chest X-ray images.
Such a tool can gauge severity of COVID-19 lung infections that can be used for escalation or de-escalation of care.
arXiv Detail & Related papers (2020-05-24T23:13:16Z) - Viral Pneumonia Screening on Chest X-ray Images Using Confidence-Aware
Anomaly Detection [86.81773672627406]
Clusters of viral pneumonia during a short period of time may be a harbinger of an outbreak or pandemic, like SARS, MERS, and recent COVID-19.
Rapid and accurate detection of viral pneumonia using chest X-ray can be significantly useful in large-scale screening and epidemic prevention.
Viral pneumonia often have diverse causes and exhibit notably different visual appearances on X-ray images.
arXiv Detail & Related papers (2020-03-27T11:32:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.