Intuitive, Interactive Beard and Hair Synthesis with Generative Models
- URL: http://arxiv.org/abs/2004.06848v1
- Date: Wed, 15 Apr 2020 01:20:10 GMT
- Title: Intuitive, Interactive Beard and Hair Synthesis with Generative Models
- Authors: Kyle Olszewski, Duygu Ceylan, Jun Xing, Jose Echevarria, Zhili Chen,
Weikai Chen, Hao Li
- Abstract summary: We present an interactive approach to synthesizing realistic variations in facial hair in images.
We employ a neural network pipeline that synthesizes realistic and detailed images of facial hair directly in the target image in under one second.
We show compelling interactive editing results with a prototype user interface that allows novice users to progressively refine the generated image to match their desired hairstyle.
- Score: 38.93415643177721
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present an interactive approach to synthesizing realistic variations in
facial hair in images, ranging from subtle edits to existing hair to the
addition of complex and challenging hair in images of clean-shaven subjects. To
circumvent the tedious and computationally expensive tasks of modeling,
rendering and compositing the 3D geometry of the target hairstyle using the
traditional graphics pipeline, we employ a neural network pipeline that
synthesizes realistic and detailed images of facial hair directly in the target
image in under one second. The synthesis is controlled by simple and sparse
guide strokes from the user defining the general structural and color
properties of the target hairstyle. We qualitatively and quantitatively
evaluate our chosen method compared to several alternative approaches. We show
compelling interactive editing results with a prototype user interface that
allows novice users to progressively refine the generated image to match their
desired hairstyle, and demonstrate that our approach also allows for flexible
and high-fidelity scalp hair synthesis.
Related papers
- Human Hair Reconstruction with Strand-Aligned 3D Gaussians [39.32397354314153]
We introduce a new hair modeling method that uses a dual representation of classical hair strands and 3D Gaussians.
In contrast to recent approaches that leverage unstructured Gaussians to model human avatars, our method reconstructs the hair using 3D polylines, or strands.
Our method, named Gaussian Haircut, is evaluated on synthetic and real scenes and demonstrates state-of-the-art performance in the task of strand-based hair reconstruction.
arXiv Detail & Related papers (2024-09-23T07:49:46Z) - Generalizable One-shot Neural Head Avatar [90.50492165284724]
We present a method that reconstructs and animates a 3D head avatar from a single-view portrait image.
We propose a framework that not only generalizes to unseen identities based on a single-view image, but also captures characteristic details within and beyond the face area.
arXiv Detail & Related papers (2023-06-14T22:33:09Z) - Neural Haircut: Prior-Guided Strand-Based Hair Reconstruction [4.714310894654027]
This work proposes an approach capable of accurate hair geometry reconstruction at a strand level from a monocular video or multi-view images captured in uncontrolled conditions.
The combined system, named Neural Haircut, achieves high realism and personalization of the reconstructed hairstyles.
arXiv Detail & Related papers (2023-06-09T13:08:34Z) - Neural Strands: Learning Hair Geometry and Appearance from Multi-View
Images [40.91569888920849]
We present Neural Strands, a novel learning framework for modeling accurate hair geometry and appearance from multi-view image inputs.
The learned hair model can be rendered in real-time from any viewpoint with high-fidelity view-dependent effects.
arXiv Detail & Related papers (2022-07-28T13:08:46Z) - Drivable Volumetric Avatars using Texel-Aligned Features [52.89305658071045]
Photo telepresence requires both high-fidelity body modeling and faithful driving to enable dynamically synthesized appearance.
We propose an end-to-end framework that addresses two core challenges in modeling and driving full-body avatars of real people.
arXiv Detail & Related papers (2022-07-20T09:28:16Z) - Hair Color Digitization through Imaging and Deep Inverse Graphics [8.605763075773746]
We introduce a novel method for hair color digitization based on inverse graphics and deep neural networks.
Our proposed pipeline allows capturing the color appearance of a physical hair sample and renders synthetic images of hair with a similar appearance.
Our method is based on the combination of a controlled imaging device, a path-tracing rendering, and an inverse graphics model based on self-supervised machine learning.
arXiv Detail & Related papers (2022-02-08T08:57:04Z) - HairCLIP: Design Your Hair by Text and Reference Image [100.85116679883724]
This paper proposes a new hair editing interaction mode, which enables manipulating hair attributes individually or jointly.
We encode the image and text conditions in a shared embedding space and propose a unified hair editing framework.
With the carefully designed network structures and loss functions, our framework can perform high-quality hair editing.
arXiv Detail & Related papers (2021-12-09T18:59:58Z) - MichiGAN: Multi-Input-Conditioned Hair Image Generation for Portrait
Editing [122.82964863607938]
MichiGAN is a novel conditional image generation method for interactive portrait hair manipulation.
We provide user control over every major hair visual factor, including shape, structure, appearance, and background.
We also build an interactive portrait hair editing system that enables straightforward manipulation of hair by projecting intuitive and high-level user inputs.
arXiv Detail & Related papers (2020-10-30T17:59:10Z) - Generating Person Images with Appearance-aware Pose Stylizer [66.44220388377596]
We present a novel end-to-end framework to generate realistic person images based on given person poses and appearances.
The core of our framework is a novel generator called Appearance-aware Pose Stylizer (APS) which generates human images by coupling the target pose with the conditioned person appearance progressively.
arXiv Detail & Related papers (2020-07-17T15:58:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.