Spatially Attentive Output Layer for Image Classification
- URL: http://arxiv.org/abs/2004.07570v1
- Date: Thu, 16 Apr 2020 10:11:38 GMT
- Title: Spatially Attentive Output Layer for Image Classification
- Authors: Ildoo Kim, Woonhyuk Baek, Sungwoong Kim
- Abstract summary: Most convolutional neural networks (CNNs) for image classification use a global average pooling (GAP) followed by a fully-connected (FC) layer for output logits.
We propose a novel spatial output layer on top of the existing convolutional feature maps to explicitly exploit the location-specific output information.
- Score: 19.61612493183965
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Most convolutional neural networks (CNNs) for image classification use a
global average pooling (GAP) followed by a fully-connected (FC) layer for
output logits. However, this spatial aggregation procedure inherently restricts
the utilization of location-specific information at the output layer, although
this spatial information can be beneficial for classification. In this paper,
we propose a novel spatial output layer on top of the existing convolutional
feature maps to explicitly exploit the location-specific output information. In
specific, given the spatial feature maps, we replace the previous GAP-FC layer
with a spatially attentive output layer (SAOL) by employing a attention mask on
spatial logits. The proposed location-specific attention selectively aggregates
spatial logits within a target region, which leads to not only the performance
improvement but also spatially interpretable outputs. Moreover, the proposed
SAOL also permits to fully exploit location-specific self-supervision as well
as self-distillation to enhance the generalization ability during training. The
proposed SAOL with self-supervision and self-distillation can be easily plugged
into existing CNNs. Experimental results on various classification tasks with
representative architectures show consistent performance improvements by SAOL
at almost the same computational cost.
Related papers
- Lacunarity Pooling Layers for Plant Image Classification using Texture Analysis [0.38366697175402226]
Pooling layers overlook important information encoded in the spatial arrangement of pixel intensity and/or feature values.
We propose a novel lacunarity pooling layer that aims to capture the spatial heterogeneity of the feature maps by evaluating the variability within local windows.
The lacunarity pooling layer can be seamlessly integrated into any artificial neural network architecture.
arXiv Detail & Related papers (2024-04-25T00:34:52Z) - Towards the Uncharted: Density-Descending Feature Perturbation for Semi-supervised Semantic Segmentation [51.66997548477913]
We propose a novel feature-level consistency learning framework named Density-Descending Feature Perturbation (DDFP)
Inspired by the low-density separation assumption in semi-supervised learning, our key insight is that feature density can shed a light on the most promising direction for the segmentation classifier to explore.
The proposed DDFP outperforms other designs on feature-level perturbations and shows state of the art performances on both Pascal VOC and Cityscapes dataset.
arXiv Detail & Related papers (2024-03-11T06:59:05Z) - SSPNet: Scale and Spatial Priors Guided Generalizable and Interpretable
Pedestrian Attribute Recognition [23.55622798950833]
A novel Scale and Spatial Priors Guided Network (SSPNet) is proposed for Pedestrian Attribute Recognition (PAR) models.
SSPNet learns to provide reasonable scale prior information for different attribute groups, allowing the model to focus on different levels of feature maps.
A novel IoU based attribute localization metric is proposed for Weakly-supervised Pedestrian Attribute localization (WPAL) based on the improved Grad-CAM for attribute response mask.
arXiv Detail & Related papers (2023-12-11T00:41:40Z) - Spatial-Aware Token for Weakly Supervised Object Localization [137.0570026552845]
We propose a task-specific spatial-aware token to condition localization in a weakly supervised manner.
Experiments show that the proposed SAT achieves state-of-the-art performance on both CUB-200 and ImageNet, with 98.45% and 73.13% GT-known Loc.
arXiv Detail & Related papers (2023-03-18T15:38:17Z) - CloudAttention: Efficient Multi-Scale Attention Scheme For 3D Point
Cloud Learning [81.85951026033787]
We set transformers in this work and incorporate them into a hierarchical framework for shape classification and part and scene segmentation.
We also compute efficient and dynamic global cross attentions by leveraging sampling and grouping at each iteration.
The proposed hierarchical model achieves state-of-the-art shape classification in mean accuracy and yields results on par with the previous segmentation methods.
arXiv Detail & Related papers (2022-07-31T21:39:15Z) - Spatial Likelihood Voting with Self-Knowledge Distillation for Weakly
Supervised Object Detection [54.24966006457756]
We propose a WSOD framework called the Spatial Likelihood Voting with Self-knowledge Distillation Network (SLV-SD Net)
SLV-SD Net converges region proposal localization without bounding box annotations.
Experiments on the PASCAL VOC 2007/2012 and MS-COCO datasets demonstrate the excellent performance of SLV-SD Net.
arXiv Detail & Related papers (2022-04-14T11:56:19Z) - TC-Net: Triple Context Network for Automated Stroke Lesion Segmentation [0.5482532589225552]
We propose a new network, Triple Context Network (TC-Net), with the capture of spatial contextual information as the core.
Our network is evaluated on the open dataset ATLAS, achieving the highest score of 0.594, Hausdorff distance of 27.005 mm, and average symmetry surface distance of 7.137 mm.
arXiv Detail & Related papers (2022-02-28T11:12:16Z) - Unveiling the Potential of Structure-Preserving for Weakly Supervised
Object Localization [71.79436685992128]
We propose a two-stage approach, termed structure-preserving activation (SPA), towards fully leveraging the structure information incorporated in convolutional features for WSOL.
In the first stage, a restricted activation module (RAM) is designed to alleviate the structure-missing issue caused by the classification network.
In the second stage, we propose a post-process approach, termed self-correlation map generating (SCG) module to obtain structure-preserving localization maps.
arXiv Detail & Related papers (2021-03-08T03:04:14Z) - Local Context Attention for Salient Object Segmentation [5.542044768017415]
We propose a novel Local Context Attention Network (LCANet) to generate locally reinforcement feature maps in a uniform representational architecture.
The proposed network introduces an Attentional Correlation Filter (ACF) module to generate explicit local attention by calculating the correlation feature map between coarse prediction and global context.
Comprehensive experiments are conducted on several salient object segmentation datasets, demonstrating the superior performance of the proposed LCANet against the state-of-the-art methods.
arXiv Detail & Related papers (2020-09-24T09:20:06Z) - Learning to Predict Context-adaptive Convolution for Semantic
Segmentation [66.27139797427147]
Long-range contextual information is essential for achieving high-performance semantic segmentation.
We propose a Context-adaptive Convolution Network (CaC-Net) to predict a spatially-varying feature weighting vector.
Our CaC-Net achieves superior segmentation performance on three public datasets.
arXiv Detail & Related papers (2020-04-17T13:09:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.