Quantum $\mathcal{R}$-matrices as universal qubit gates
- URL: http://arxiv.org/abs/2004.07764v1
- Date: Thu, 16 Apr 2020 16:59:04 GMT
- Title: Quantum $\mathcal{R}$-matrices as universal qubit gates
- Authors: Nikita Kolganov and Andrey Morozov
- Abstract summary: We use quantum $mathcalR$-matrices as universal quantum gates and study the approximations of some one-qubit operations.
We make some modifications to the known Solovay-Kitaev algorithm suitable for our problem.
- Score: 0.9137554315375922
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the Chern-Simons approach to the topological quantum computing. We
use quantum $\mathcal{R}$-matrices as universal quantum gates and study the
approximations of some one-qubit operations. We make some modifications to the
known Solovay-Kitaev algorithm suitable for our particular problem.
Related papers
- High-dimensional graphs convolution for quantum walks photonic applications [41.94295877935867]
We suggest a new method for lattices and hypercycle convolution that preserves quantum walk dynamics.<n>Our findings may be useful for saving a significant number of qubits required for algorithms that use quantum walk simulation on quantum devices.
arXiv Detail & Related papers (2025-07-21T18:28:34Z) - Fermion determinants on a quantum computer [0.0]
The algorithm uses the quantum eigenvalue transform, and quantum mean estimation, giving a query complexity that scales like $O(Vlog(V))$ in the matrix dimension $V$.
arXiv Detail & Related papers (2024-07-18T01:00:28Z) - Quantum hashing algorithm implementation [0.0]
We implement a quantum hashing algorithm which is based on a fingerprinting technique presented by Ambainis and Frievalds, 1988, on gate-based quantum computers.
We consider 16-qubit and 27-qubit IBMQ computers with the special graphs of qubits representing nearest neighbor architecture that is not Linear Nearest Neighbor (LNN) one.
arXiv Detail & Related papers (2024-07-14T09:41:16Z) - The Algorithm for Solving Quantum Linear Systems of Equations With Coherent Superposition and Its Extended Applications [8.8400072344375]
We propose two quantum algorithms for solving quantum linear systems of equations with coherent superposition.
The two quantum algorithms can both compute the rank and general solution by one measurement.
Our analysis indicates that the proposed algorithms are mainly suitable for conducting attacks against lightweight symmetric ciphers.
arXiv Detail & Related papers (2024-05-11T03:03:14Z) - Generalized quantum Arimoto-Blahut algorithm and its application to
quantum information bottleneck [55.22418739014892]
We generalize the quantum Arimoto-Blahut algorithm by Ramakrishnan et al.
We apply our algorithm to the quantum information bottleneck with three quantum systems.
Our numerical analysis shows that our algorithm is better than their algorithm.
arXiv Detail & Related papers (2023-11-19T00:06:11Z) - Logarithmic-Regret Quantum Learning Algorithms for Zero-Sum Games [10.79781442303645]
We propose the first online quantum algorithm for solving zero-sum games.
Our algorithm generates classical outputs with succinct descriptions.
At the heart of our algorithm is a fast quantum multi-sampling procedure for the Gibbs sampling problem.
arXiv Detail & Related papers (2023-04-27T14:02:54Z) - A hybrid quantum-classical algorithm for multichannel quantum scattering
of atoms and molecules [62.997667081978825]
We propose a hybrid quantum-classical algorithm for solving the Schr"odinger equation for atomic and molecular collisions.
The algorithm is based on the $S$-matrix version of the Kohn variational principle, which computes the fundamental scattering $S$-matrix.
We show how the algorithm could be scaled up to simulate collisions of large polyatomic molecules.
arXiv Detail & Related papers (2023-04-12T18:10:47Z) - Qubit-Efficient Randomized Quantum Algorithms for Linear Algebra [3.4137115855910767]
We propose a class of randomized quantum algorithms for the task of sampling from matrix functions.
Our use of qubits is purely algorithmic, and no additional qubits are required for quantum data structures.
arXiv Detail & Related papers (2023-02-03T17:22:49Z) - Quantum Worst-Case to Average-Case Reductions for All Linear Problems [66.65497337069792]
We study the problem of designing worst-case to average-case reductions for quantum algorithms.
We provide an explicit and efficient transformation of quantum algorithms that are only correct on a small fraction of their inputs into ones that are correct on all inputs.
arXiv Detail & Related papers (2022-12-06T22:01:49Z) - Entanglement and coherence in Bernstein-Vazirani algorithm [58.720142291102135]
Bernstein-Vazirani algorithm allows one to determine a bit string encoded into an oracle.
We analyze in detail the quantum resources in the Bernstein-Vazirani algorithm.
We show that in the absence of entanglement, the performance of the algorithm is directly related to the amount of quantum coherence in the initial state.
arXiv Detail & Related papers (2022-05-26T20:32:36Z) - Quantum algorithms for grid-based variational time evolution [36.136619420474766]
We propose a variational quantum algorithm for performing quantum dynamics in first quantization.
Our simulations exhibit the previously observed numerical instabilities of variational time propagation approaches.
arXiv Detail & Related papers (2022-03-04T19:00:45Z) - Synthesis of Quantum Circuits with an Island Genetic Algorithm [44.99833362998488]
Given a unitary matrix that performs certain operation, obtaining the equivalent quantum circuit is a non-trivial task.
Three problems are explored: the coin for the quantum walker, the Toffoli gate and the Fredkin gate.
The algorithm proposed proved to be efficient in decomposition of quantum circuits, and as a generic approach, it is limited only by the available computational power.
arXiv Detail & Related papers (2021-06-06T13:15:25Z) - Quantum Gram-Schmidt Processes and Their Application to Efficient State
Read-out for Quantum Algorithms [87.04438831673063]
We present an efficient read-out protocol that yields the classical vector form of the generated state.
Our protocol suits the case that the output state lies in the row space of the input matrix.
One of our technical tools is an efficient quantum algorithm for performing the Gram-Schmidt orthonormal procedure.
arXiv Detail & Related papers (2020-04-14T11:05:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.