Geometry-Aware Gradient Algorithms for Neural Architecture Search
- URL: http://arxiv.org/abs/2004.07802v5
- Date: Thu, 18 Mar 2021 17:47:28 GMT
- Title: Geometry-Aware Gradient Algorithms for Neural Architecture Search
- Authors: Liam Li, Mikhail Khodak, Maria-Florina Balcan, Ameet Talwalkar
- Abstract summary: We argue for the study of single-level empirical risk minimization to understand NAS with weight-sharing.
We present a geometry-aware framework that exploits the underlying structure of this optimization to return sparse architectural parameters.
We achieve state-of-the-art accuracy on the latest NAS benchmarks in computer vision.
- Score: 41.943045315986744
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent state-of-the-art methods for neural architecture search (NAS) exploit
gradient-based optimization by relaxing the problem into continuous
optimization over architectures and shared-weights, a noisy process that
remains poorly understood. We argue for the study of single-level empirical
risk minimization to understand NAS with weight-sharing, reducing the design of
NAS methods to devising optimizers and regularizers that can quickly obtain
high-quality solutions to this problem. Invoking the theory of mirror descent,
we present a geometry-aware framework that exploits the underlying structure of
this optimization to return sparse architectural parameters, leading to simple
yet novel algorithms that enjoy fast convergence guarantees and achieve
state-of-the-art accuracy on the latest NAS benchmarks in computer vision.
Notably, we exceed the best published results for both CIFAR and ImageNet on
both the DARTS search space and NAS-Bench201; on the latter we achieve
near-oracle-optimal performance on CIFAR-10 and CIFAR-100. Together, our theory
and experiments demonstrate a principled way to co-design optimizers and
continuous relaxations of discrete NAS search spaces.
Related papers
- Generalizable Lightweight Proxy for Robust NAS against Diverse
Perturbations [59.683234126055694]
Recent neural architecture search (NAS) frameworks have been successful in finding optimal architectures for given conditions.
We propose a novel lightweight robust zero-cost proxy that considers the consistency across features, parameters, and gradients of both clean and perturbed images.
Our approach facilitates an efficient and rapid search for neural architectures capable of learning generalizable features that exhibit robustness across diverse perturbations.
arXiv Detail & Related papers (2023-06-08T08:34:26Z) - BaLeNAS: Differentiable Architecture Search via the Bayesian Learning
Rule [95.56873042777316]
Differentiable Architecture Search (DARTS) has received massive attention in recent years, mainly because it significantly reduces the computational cost.
This paper formulates the neural architecture search as a distribution learning problem through relaxing the architecture weights into Gaussian distributions.
We demonstrate how the differentiable NAS benefits from Bayesian principles, enhancing exploration and improving stability.
arXiv Detail & Related papers (2021-11-25T18:13:42Z) - iDARTS: Differentiable Architecture Search with Stochastic Implicit
Gradients [75.41173109807735]
Differentiable ARchiTecture Search (DARTS) has recently become the mainstream of neural architecture search (NAS)
We tackle the hypergradient computation in DARTS based on the implicit function theorem.
We show that the architecture optimisation with the proposed method, named iDARTS, is expected to converge to a stationary point.
arXiv Detail & Related papers (2021-06-21T00:44:11Z) - Effective, Efficient and Robust Neural Architecture Search [4.273005643715522]
Recent advances in adversarial attacks show the vulnerability of deep neural networks searched by Neural Architecture Search (NAS)
We propose an Effective, Efficient, and Robust Neural Architecture Search (E2RNAS) method to search a neural network architecture by taking the performance, robustness, and resource constraint into consideration.
Experiments on benchmark datasets show that the proposed E2RNAS method can find adversarially robust architectures with optimized model size and comparable classification accuracy.
arXiv Detail & Related papers (2020-11-19T13:46:23Z) - Smooth Variational Graph Embeddings for Efficient Neural Architecture
Search [41.62970837629573]
We propose a two-sided variational graph autoencoder, which allows to smoothly encode and accurately reconstruct neural architectures from various search spaces.
We evaluate the proposed approach on neural architectures defined by the ENAS approach, the NAS-Bench-101 and the NAS-Bench-201 search spaces.
arXiv Detail & Related papers (2020-10-09T17:05:41Z) - Hyperparameter Optimization in Neural Networks via Structured Sparse
Recovery [54.60327265077322]
We study two important problems in the automated design of neural networks through the lens of sparse recovery methods.
In the first part of this paper, we establish a novel connection between HPO and structured sparse recovery.
In the second part of this paper, we establish a connection between NAS and structured sparse recovery.
arXiv Detail & Related papers (2020-07-07T00:57:09Z) - DrNAS: Dirichlet Neural Architecture Search [88.56953713817545]
We treat the continuously relaxed architecture mixing weight as random variables, modeled by Dirichlet distribution.
With recently developed pathwise derivatives, the Dirichlet parameters can be easily optimized with gradient-based generalization.
To alleviate the large memory consumption of differentiable NAS, we propose a simple yet effective progressive learning scheme.
arXiv Detail & Related papers (2020-06-18T08:23:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.