How recurrent networks implement contextual processing in sentiment
analysis
- URL: http://arxiv.org/abs/2004.08013v1
- Date: Fri, 17 Apr 2020 00:58:30 GMT
- Title: How recurrent networks implement contextual processing in sentiment
analysis
- Authors: Niru Maheswaranathan, David Sussillo
- Abstract summary: We propose methods for reverse engineering recurrent neural networks (RNNs) to identify and elucidate contextual processing.
This work yields a new understanding of how RNNs process contextual information, and provides tools that should provide similar insight more broadly.
- Score: 21.511325784114142
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural networks have a remarkable capacity for contextual processing--using
recent or nearby inputs to modify processing of current input. For example, in
natural language, contextual processing is necessary to correctly interpret
negation (e.g. phrases such as "not bad"). However, our ability to understand
how networks process context is limited. Here, we propose general methods for
reverse engineering recurrent neural networks (RNNs) to identify and elucidate
contextual processing. We apply these methods to understand RNNs trained on
sentiment classification. This analysis reveals inputs that induce contextual
effects, quantifies the strength and timescale of these effects, and identifies
sets of these inputs with similar properties. Additionally, we analyze
contextual effects related to differential processing of the beginning and end
of documents. Using the insights learned from the RNNs we improve baseline
Bag-of-Words models with simple extensions that incorporate contextual
modification, recovering greater than 90% of the RNN's performance increase
over the baseline. This work yields a new understanding of how RNNs process
contextual information, and provides tools that should provide similar insight
more broadly.
Related papers
- GINN-KAN: Interpretability pipelining with applications in Physics Informed Neural Networks [5.2969467015867915]
We introduce the concept of interpretability pipelineing, to incorporate multiple interpretability techniques to outperform each individual technique.
We evaluate two recent models selected for their potential to incorporate interpretability into standard neural network architectures.
We introduce a novel interpretable neural network GINN-KAN that synthesizes the advantages of both models.
arXiv Detail & Related papers (2024-08-27T04:57:53Z) - Incrementally-Computable Neural Networks: Efficient Inference for
Dynamic Inputs [75.40636935415601]
Deep learning often faces the challenge of efficiently processing dynamic inputs, such as sensor data or user inputs.
We take an incremental computing approach, looking to reuse calculations as the inputs change.
We apply this approach to the transformers architecture, creating an efficient incremental inference algorithm with complexity proportional to the fraction of modified inputs.
arXiv Detail & Related papers (2023-07-27T16:30:27Z) - Convolutional Neural Networks for Sentiment Analysis on Weibo Data: A
Natural Language Processing Approach [0.228438857884398]
This study addresses the complex task of sentiment analysis on a dataset of 119,988 original tweets from Weibo using a Convolutional Neural Network (CNN)
A CNN-based model was utilized, leveraging word embeddings for feature extraction, and trained to perform sentiment classification.
The model achieved a macro-average F1-score of approximately 0.73 on the test set, showing balanced performance across positive, neutral, and negative sentiments.
arXiv Detail & Related papers (2023-07-13T03:02:56Z) - Revisiting the Roles of "Text" in Text Games [102.22750109468652]
This paper investigates the roles of text in the face of different reinforcement learning challenges.
We propose a simple scheme to extract relevant contextual information into an approximate state hash.
Such a lightweight plug-in achieves competitive performance with state-of-the-art text agents.
arXiv Detail & Related papers (2022-10-15T21:52:39Z) - TeKo: Text-Rich Graph Neural Networks with External Knowledge [75.91477450060808]
We propose a novel text-rich graph neural network with external knowledge (TeKo)
We first present a flexible heterogeneous semantic network that incorporates high-quality entities.
We then introduce two types of external knowledge, that is, structured triplets and unstructured entity description.
arXiv Detail & Related papers (2022-06-15T02:33:10Z) - Convolutional Dictionary Learning by End-To-End Training of Iterative
Neural Networks [3.6280929178575994]
In this work, we construct an INN which can be used as a supervised and physics-informed online convolutional dictionary learning algorithm.
We show that the proposed INN improves over two conventional model-agnostic training methods and yields competitive results also compared to a deep INN.
arXiv Detail & Related papers (2022-06-09T12:15:38Z) - The geometry of integration in text classification RNNs [20.76659136484842]
We study recurrent networks trained on a battery of both natural and synthetic text classification tasks.
We find the dynamics of these trained RNNs to be both interpretable and low-dimensional.
Our observations span multiple architectures and datasets, reflecting a common mechanism RNNs employ to perform text classification.
arXiv Detail & Related papers (2020-10-28T17:58:53Z) - SHAP values for Explaining CNN-based Text Classification Models [10.881494765759829]
This paper develops a methodology to compute SHAP values for local explainability of CNN-based text classification models.
The approach is also extended to compute global scores to assess the importance of features.
arXiv Detail & Related papers (2020-08-26T21:28:41Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
Spiking neural networks (SNNs) have shown advantages over traditional artificial neural networks (ANNs) for low latency and high computational efficiency.
We propose a novel ANN-to-SNN conversion and layer-wise learning framework for rapid and efficient pattern recognition.
arXiv Detail & Related papers (2020-07-02T15:38:44Z) - Boosting Deep Neural Networks with Geometrical Prior Knowledge: A Survey [77.99182201815763]
Deep Neural Networks (DNNs) achieve state-of-the-art results in many different problem settings.
DNNs are often treated as black box systems, which complicates their evaluation and validation.
One promising field, inspired by the success of convolutional neural networks (CNNs) in computer vision tasks, is to incorporate knowledge about symmetric geometrical transformations.
arXiv Detail & Related papers (2020-06-30T14:56:05Z) - Towards Accurate Scene Text Recognition with Semantic Reasoning Networks [52.86058031919856]
We propose a novel end-to-end trainable framework named semantic reasoning network (SRN) for accurate scene text recognition.
GSRM is introduced to capture global semantic context through multi-way parallel transmission.
Results on 7 public benchmarks, including regular text, irregular text and non-Latin long text, verify the effectiveness and robustness of the proposed method.
arXiv Detail & Related papers (2020-03-27T09:19:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.