Statistical inference in massive datasets by empirical likelihood
- URL: http://arxiv.org/abs/2004.08580v1
- Date: Sat, 18 Apr 2020 10:18:07 GMT
- Title: Statistical inference in massive datasets by empirical likelihood
- Authors: Xuejun Ma, Shaochen Wang, Wang Zhou
- Abstract summary: We propose a new statistical inference method for massive data sets.
Our method is very simple and efficient by combining divide-and-conquer method and empirical likelihood.
- Score: 1.6887485428725042
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we propose a new statistical inference method for massive data
sets, which is very simple and efficient by combining divide-and-conquer method
and empirical likelihood. Compared with two popular methods (the bag of little
bootstrap and the subsampled double bootstrap), we make full use of data sets,
and reduce the computation burden. Extensive numerical studies and real data
analysis demonstrate the effectiveness and flexibility of our proposed method.
Furthermore, the asymptotic property of our method is derived.
Related papers
- Optimizing Pretraining Data Mixtures with LLM-Estimated Utility [52.08428597962423]
Large Language Models improve with increasing amounts of high-quality training data.
We find token-counts outperform manual and learned mixes, indicating that simple approaches for dataset size and diversity are surprisingly effective.
We propose two complementary approaches: UtiliMax, which extends token-based $200s by incorporating utility estimates from reduced-scale ablations, achieving up to a 10.6x speedup over manual baselines; and Model Estimated Data Utility (MEDU), which leverages LLMs to estimate data utility from small samples, matching ablation-based performance while reducing computational requirements by $simx.
arXiv Detail & Related papers (2025-01-20T21:10:22Z) - Estimation of multiple mean vectors in high dimension [4.2466572124753]
We endeavour to estimate numerous multi-dimensional means of various probability distributions on a common space based on independent samples.
Our approach involves forming estimators through convex combinations of empirical means derived from these samples.
arXiv Detail & Related papers (2024-03-22T08:42:41Z) - Improved Distribution Matching for Dataset Condensation [91.55972945798531]
We propose a novel dataset condensation method based on distribution matching.
Our simple yet effective method outperforms most previous optimization-oriented methods with much fewer computational resources.
arXiv Detail & Related papers (2023-07-19T04:07:33Z) - A Coreset Learning Reality Check [33.002265576337486]
Subsampling algorithms are a natural approach to reduce data size before fitting models on massive datasets.
In recent years, several works have proposed methods for subsampling rows from a data matrix while maintaining relevant information for classification.
We compare multiple methods for logistic regression drawn from the coreset and optimal subsampling literature and discover inconsistencies in their effectiveness.
arXiv Detail & Related papers (2023-01-15T19:26:17Z) - Sampling from Arbitrary Functions via PSD Models [55.41644538483948]
We take a two-step approach by first modeling the probability distribution and then sampling from that model.
We show that these models can approximate a large class of densities concisely using few evaluations, and present a simple algorithm to effectively sample from these models.
arXiv Detail & Related papers (2021-10-20T12:25:22Z) - Distributionally Robust Learning in Heterogeneous Contexts [29.60681287631439]
We consider the problem of learning from training data obtained in different contexts, where the test data is subject to distributional shifts.
We develop a distributionally robust method that focuses on excess risks and achieves a more appropriate trade-off between performance and robustness than the conventional and overly conservative minimax approach.
arXiv Detail & Related papers (2021-05-18T14:00:34Z) - Scalable Personalised Item Ranking through Parametric Density Estimation [53.44830012414444]
Learning from implicit feedback is challenging because of the difficult nature of the one-class problem.
Most conventional methods use a pairwise ranking approach and negative samplers to cope with the one-class problem.
We propose a learning-to-rank approach, which achieves convergence speed comparable to the pointwise counterpart.
arXiv Detail & Related papers (2021-05-11T03:38:16Z) - DEALIO: Data-Efficient Adversarial Learning for Imitation from
Observation [57.358212277226315]
In imitation learning from observation IfO, a learning agent seeks to imitate a demonstrating agent using only observations of the demonstrated behavior without access to the control signals generated by the demonstrator.
Recent methods based on adversarial imitation learning have led to state-of-the-art performance on IfO problems, but they typically suffer from high sample complexity due to a reliance on data-inefficient, model-free reinforcement learning algorithms.
This issue makes them impractical to deploy in real-world settings, where gathering samples can incur high costs in terms of time, energy, and risk.
We propose a more data-efficient IfO algorithm
arXiv Detail & Related papers (2021-03-31T23:46:32Z) - Distributed Learning of Finite Gaussian Mixtures [21.652015112462]
We study split-and-conquer approaches for the distributed learning of finite Gaussian mixtures.
New estimator is shown to be consistent and retains root-n consistency under some general conditions.
Experiments based on simulated and real-world data show that the proposed split-and-conquer approach has comparable statistical performance with the global estimator.
arXiv Detail & Related papers (2020-10-20T16:17:47Z) - The UU-test for Statistical Modeling of Unimodal Data [0.20305676256390928]
We propose a technique called UU-test (Unimodal Uniform test) to decide on the unimodality of a one-dimensional dataset.
A unique feature of this approach is that in the case of unimodality, it also provides a statistical model of the data in the form of a Uniform Mixture Model.
arXiv Detail & Related papers (2020-08-28T08:34:28Z) - Compressing Large Sample Data for Discriminant Analysis [78.12073412066698]
We consider the computational issues due to large sample size within the discriminant analysis framework.
We propose a new compression approach for reducing the number of training samples for linear and quadratic discriminant analysis.
arXiv Detail & Related papers (2020-05-08T05:09:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.