An Automated Pipeline for Character and Relationship Extraction from
Readers' Literary Book Reviews on Goodreads.com
- URL: http://arxiv.org/abs/2004.09601v1
- Date: Mon, 20 Apr 2020 19:57:37 GMT
- Title: An Automated Pipeline for Character and Relationship Extraction from
Readers' Literary Book Reviews on Goodreads.com
- Authors: Shadi Shahsavari, Ehsan Ebrahimzadeh, Behnam Shahbazi, Misagh Falahi,
Pavan Holur, Roja Bandari, Timothy R. Tangherlini, Vwani Roychowdhury
- Abstract summary: We represent a narrative framework in the form of an actant-relationship story graph.
Posts and reviews are viewed as samples of sub graphs/networks of the hidden narrative framework.
We develop a pipeline of interlocking automated methods to extract key actants and their relationships.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reader reviews of literary fiction on social media, especially those in
persistent, dedicated forums, create and are in turn driven by underlying
narrative frameworks. In their comments about a novel, readers generally
include only a subset of characters and their relationships, thus offering a
limited perspective on that work. Yet in aggregate, these reviews capture an
underlying narrative framework comprised of different actants (people, places,
things), their roles, and interactions that we label the "consensus narrative
framework". We represent this framework in the form of an actant-relationship
story graph. Extracting this graph is a challenging computational problem,
which we pose as a latent graphical model estimation problem. Posts and reviews
are viewed as samples of sub graphs/networks of the hidden narrative framework.
Inspired by the qualitative narrative theory of Greimas, we formulate a
graphical generative Machine Learning (ML) model where nodes represent actants,
and multi-edges and self-loops among nodes capture context-specific
relationships. We develop a pipeline of interlocking automated methods to
extract key actants and their relationships, and apply it to thousands of
reviews and comments posted on Goodreads.com. We manually derive the ground
truth narrative framework from SparkNotes, and then use word embedding tools to
compare relationships in ground truth networks with our extracted networks. We
find that our automated methodology generates highly accurate consensus
narrative frameworks: for our four target novels, with approximately 2900
reviews per novel, we report average coverage/recall of important relationships
of > 80% and an average edge detection rate of >89\%. These extracted narrative
frameworks can generate insight into how people (or classes of people) read and
how they recount what they have read to others.
Related papers
- BookWorm: A Dataset for Character Description and Analysis [59.186325346763184]
We define two tasks: character description, which generates a brief factual profile, and character analysis, which offers an in-depth interpretation.
We introduce the BookWorm dataset, pairing books from the Gutenberg Project with human-written descriptions and analyses.
Our findings show that retrieval-based approaches outperform hierarchical ones in both tasks.
arXiv Detail & Related papers (2024-10-14T10:55:58Z) - Agents' Room: Narrative Generation through Multi-step Collaboration [54.98886593802834]
We propose a generation framework inspired by narrative theory that decomposes narrative writing into subtasks tackled by specialized agents.
We show that Agents' Room generates stories preferred by expert evaluators over those produced by baseline systems.
arXiv Detail & Related papers (2024-10-03T15:44:42Z) - Generating Visual Stories with Grounded and Coreferent Characters [63.07511918366848]
We present the first model capable of predicting visual stories with consistently grounded and coreferent character mentions.
Our model is finetuned on a new dataset which we build on top of the widely used VIST benchmark.
We also propose new evaluation metrics to measure the richness of characters and coreference in stories.
arXiv Detail & Related papers (2024-09-20T14:56:33Z) - Fine-Grained Modeling of Narrative Context: A Coherence Perspective via Retrospective Questions [48.18584733906447]
This work introduces an original and practical paradigm for narrative comprehension, stemming from the characteristics that individual passages within narratives tend to be more cohesively related than isolated.
We propose a fine-grained modeling of narrative context, by formulating a graph dubbed NarCo, which explicitly depicts task-agnostic coherence dependencies.
arXiv Detail & Related papers (2024-02-21T06:14:04Z) - Panel Transitions for Genre Analysis in Visual Narratives [1.320904960556043]
We present a novel approach to do a multi-modal analysis of genre based on comics and manga-style visual narratives.
We highlight some of the limitations and challenges of our existing computational approaches in modeling subjective labels.
arXiv Detail & Related papers (2023-12-14T08:05:09Z) - An Analysis of Reader Engagement in Literary Fiction through Eye
Tracking and Linguistic Features [11.805980147608178]
We analyzed the significance of various qualities of the text in predicting how engaging a reader is likely to find it.
Furthering our understanding of what captivates readers in fiction will help better inform models used in creative narrative generation.
arXiv Detail & Related papers (2023-06-06T22:14:59Z) - Summarization with Graphical Elements [55.5913491389047]
We propose a new task: summarization with graphical elements.
We collect a high quality human labeled dataset to support research into the task.
arXiv Detail & Related papers (2022-04-15T17:16:41Z) - Guiding Neural Story Generation with Reader Models [5.935317028008691]
We introduce Story generation with Reader Models (StoRM), a framework in which a reader model is used to reason about the story should progress.
Experiments show that our model produces significantly more coherent and on-topic stories, outperforming baselines in dimensions including plot plausibility and staying on topic.
arXiv Detail & Related papers (2021-12-16T03:44:01Z) - Modeling Social Readers: Novel Tools for Addressing Reception from
Online Book Reviews [0.0]
We study the readers' distillation of the main storylines in a novel using a corpus of reviews of five popular novels.
We make three important contributions to the study of infinite vocabulary networks.
We present a new sequencing algorithm, REV2SEQ, that generates a consensus sequence of events based on partial trajectories aggregated from the reviews.
arXiv Detail & Related papers (2021-05-03T20:10:14Z) - Relation Clustering in Narrative Knowledge Graphs [71.98234178455398]
relational sentences in the original text are embedded (with SBERT) and clustered in order to merge together semantically similar relations.
Preliminary tests show that such clustering might successfully detect similar relations, and provide a valuable preprocessing for semi-supervised approaches.
arXiv Detail & Related papers (2020-11-27T10:43:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.