Generative Synthetic Augmentation using Label-to-Image Translation for
Nuclei Image Segmentation
- URL: http://arxiv.org/abs/2004.10126v3
- Date: Tue, 2 Mar 2021 22:48:46 GMT
- Title: Generative Synthetic Augmentation using Label-to-Image Translation for
Nuclei Image Segmentation
- Authors: Takato Yasuno
- Abstract summary: We propose a synthetic augmentation using label-to-image translation, mapping from a semantic label with the edge structure to a real image.
We compute and report that a proposed synthetic augmentation procedure improve their accuracy.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In medical image diagnosis, pathology image analysis using semantic
segmentation becomes important for efficient screening as a field of digital
pathology. The spatial augmentation is ordinary used for semantic segmentation.
Tumor images under malignant are rare and to annotate the labels of nuclei
region takes much time-consuming. We require an effective use of dataset to
maximize the segmentation accuracy. It is expected that some augmentation to
transform generalized images influence the segmentation performance. We propose
a synthetic augmentation using label-to-image translation, mapping from a
semantic label with the edge structure to a real image. Exactly this paper deal
with stain slides of nuclei in tumor. Actually, we demonstrate several
segmentation algorithms applied to the initial dataset that contains real
images and labels using synthetic augmentation in order to add their
generalized images. We computes and reports that a proposed synthetic
augmentation procedure improve their accuracy.
Related papers
- COIN: Counterfactual inpainting for weakly supervised semantic segmentation for medical images [3.5418498524791766]
This research is development of a novel counterfactual inpainting approach (COIN)
COIN flips the predicted classification label from abnormal to normal by using a generative model.
The effectiveness of the method is demonstrated by segmenting synthetic targets and actual kidney tumors from CT images acquired from Tartu University Hospital in Estonia.
arXiv Detail & Related papers (2024-04-19T12:09:49Z) - Diffusion-based Data Augmentation for Nuclei Image Segmentation [68.28350341833526]
We introduce the first diffusion-based augmentation method for nuclei segmentation.
The idea is to synthesize a large number of labeled images to facilitate training the segmentation model.
The experimental results show that by augmenting 10% labeled real dataset with synthetic samples, one can achieve comparable segmentation results.
arXiv Detail & Related papers (2023-10-22T06:16:16Z) - Exploring Semantic Consistency in Unpaired Image Translation to Generate
Data for Surgical Applications [1.8011391924021904]
This study empirically investigates unpaired image translation methods for generating suitable data in surgical applications.
We find that a simple combination of structural-similarity loss and contrastive learning yields the most promising results.
arXiv Detail & Related papers (2023-09-06T14:43:22Z) - Self-Supervised Correction Learning for Semi-Supervised Biomedical Image
Segmentation [84.58210297703714]
We propose a self-supervised correction learning paradigm for semi-supervised biomedical image segmentation.
We design a dual-task network, including a shared encoder and two independent decoders for segmentation and lesion region inpainting.
Experiments on three medical image segmentation datasets for different tasks demonstrate the outstanding performance of our method.
arXiv Detail & Related papers (2023-01-12T08:19:46Z) - CT Image Synthesis Using Weakly Supervised Segmentation and Geometric
Inter-Label Relations For COVID Image Analysis [4.898744396854313]
We propose improvements over previous GAN-based medical image synthesis methods by learning the relationship between different anatomical labels.
We use the synthetic images from our method to train networks for segmenting COVID-19 infected areas from lung CT images.
arXiv Detail & Related papers (2021-06-15T07:21:24Z) - Segmenter: Transformer for Semantic Segmentation [79.9887988699159]
We introduce Segmenter, a transformer model for semantic segmentation.
We build on the recent Vision Transformer (ViT) and extend it to semantic segmentation.
It outperforms the state of the art on the challenging ADE20K dataset and performs on-par on Pascal Context and Cityscapes.
arXiv Detail & Related papers (2021-05-12T13:01:44Z) - Semantic Segmentation with Generative Models: Semi-Supervised Learning
and Strong Out-of-Domain Generalization [112.68171734288237]
We propose a novel framework for discriminative pixel-level tasks using a generative model of both images and labels.
We learn a generative adversarial network that captures the joint image-label distribution and is trained efficiently using a large set of unlabeled images.
We demonstrate strong in-domain performance compared to several baselines, and are the first to showcase extreme out-of-domain generalization.
arXiv Detail & Related papers (2021-04-12T21:41:25Z) - Image Translation for Medical Image Generation -- Ischemic Stroke
Lesions [0.0]
Synthetic databases with annotated pathologies could provide the required amounts of training data.
We train different image-to-image translation models to synthesize magnetic resonance images of brain volumes with and without stroke lesions.
We show that for a small database of only 10 or 50 clinical cases, synthetic data augmentation yields significant improvement.
arXiv Detail & Related papers (2020-10-05T09:12:28Z) - Towards Unsupervised Learning for Instrument Segmentation in Robotic
Surgery with Cycle-Consistent Adversarial Networks [54.00217496410142]
We propose an unpaired image-to-image translation where the goal is to learn the mapping between an input endoscopic image and a corresponding annotation.
Our approach allows to train image segmentation models without the need to acquire expensive annotations.
We test our proposed method on Endovis 2017 challenge dataset and show that it is competitive with supervised segmentation methods.
arXiv Detail & Related papers (2020-07-09T01:39:39Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
We propose improvements over previous GAN-based medical image synthesis methods by jointly encoding the intrinsic relationship of geometry and shape.
The proposed method outperforms state-of-the-art segmentation methods on the public RETOUCH dataset having images captured from different acquisition procedures.
arXiv Detail & Related papers (2020-03-31T11:50:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.