Graph-based Kinship Reasoning Network
- URL: http://arxiv.org/abs/2004.10375v1
- Date: Wed, 22 Apr 2020 02:55:38 GMT
- Title: Graph-based Kinship Reasoning Network
- Authors: Wanhua Li, Yingqiang Zhang, Kangchen Lv, Jiwen Lu, Jianjiang Feng, and
Jie Zhou
- Abstract summary: We propose a graph-based kinship reasoning (GKR) network for kinship verification.
The proposed GKR constructs a star graph called kinship relational graph.
Extensive experimental results on the KinFaceW-I and KinFaceW-II datasets show that the proposed GKR outperforms the state-of-the-art methods.
- Score: 83.143147853422
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we propose a graph-based kinship reasoning (GKR) network for
kinship verification, which aims to effectively perform relational reasoning on
the extracted features of an image pair. Unlike most existing methods which
mainly focus on how to learn discriminative features, our method considers how
to compare and fuse the extracted feature pair to reason about the kin
relations. The proposed GKR constructs a star graph called kinship relational
graph where each peripheral node represents the information comparison in one
feature dimension and the central node is used as a bridge for information
communication among peripheral nodes. Then the GKR performs relational
reasoning on this graph with recursive message passing. Extensive experimental
results on the KinFaceW-I and KinFaceW-II datasets show that the proposed GKR
outperforms the state-of-the-art methods.
Related papers
- Neighbor Overlay-Induced Graph Attention Network [5.792501481702088]
Graph neural networks (GNNs) have garnered significant attention due to their ability to represent graph data.
This study proposes a neighbor overlay-induced graph attention network (NO-GAT) with the following two-fold ideas.
Empirical studies on graph benchmark datasets indicate that the proposed NO-GAT consistently outperforms state-of-the-art models.
arXiv Detail & Related papers (2024-08-16T15:01:28Z) - GraphRARE: Reinforcement Learning Enhanced Graph Neural Network with Relative Entropy [21.553180564868306]
GraphRARE is a framework built upon node relative entropy and deep reinforcement learning.
An innovative node relative entropy is used to measure mutual information between node pairs.
A deep reinforcement learning-based algorithm is developed to optimize the graph topology.
arXiv Detail & Related papers (2023-12-15T11:30:18Z) - Collaborative likelihood-ratio estimation over graphs [55.98760097296213]
Graph-based Relative Unconstrained Least-squares Importance Fitting (GRULSIF)
We develop this idea in a concrete non-parametric method that we call Graph-based Relative Unconstrained Least-squares Importance Fitting (GRULSIF)
We derive convergence rates for our collaborative approach that highlights the role played by variables such as the number of available observations per node, the size of the graph, and how accurately the graph structure encodes the similarity between tasks.
arXiv Detail & Related papers (2022-05-28T15:37:03Z) - Reasoning Graph Networks for Kinship Verification: from Star-shaped to
Hierarchical [85.0376670244522]
We investigate the problem of facial kinship verification by learning hierarchical reasoning graph networks.
We develop a Star-shaped Reasoning Graph Network (S-RGN) to exploit more powerful and flexible capacity.
We also develop a Hierarchical Reasoning Graph Network (H-RGN) to exploit more powerful and flexible capacity.
arXiv Detail & Related papers (2021-09-06T03:16:56Z) - Self-supervised Consensus Representation Learning for Attributed Graph [15.729417511103602]
We introduce self-supervised learning mechanism to graph representation learning.
We propose a novel Self-supervised Consensus Representation Learning framework.
Our proposed SCRL method treats graph from two perspectives: topology graph and feature graph.
arXiv Detail & Related papers (2021-08-10T07:53:09Z) - Explicit Pairwise Factorized Graph Neural Network for Semi-Supervised
Node Classification [59.06717774425588]
We propose the Explicit Pairwise Factorized Graph Neural Network (EPFGNN), which models the whole graph as a partially observed Markov Random Field.
It contains explicit pairwise factors to model output-output relations and uses a GNN backbone to model input-output relations.
We conduct experiments on various datasets, which shows that our model can effectively improve the performance for semi-supervised node classification on graphs.
arXiv Detail & Related papers (2021-07-27T19:47:53Z) - Self-Supervised Graph Learning with Proximity-based Views and Channel
Contrast [4.761137180081091]
Graph neural networks (GNNs) use neighborhood aggregation as a core component that results in feature smoothing among nodes in proximity.
To tackle this problem, we strengthen the graph with two additional graph views, in which nodes are directly linked to those with the most similar features or local structures.
We propose a method that aims to maximize the agreement between representations across generated views and the original graph.
arXiv Detail & Related papers (2021-06-07T15:38:36Z) - Deep Reinforcement Learning of Graph Matching [63.469961545293756]
Graph matching (GM) under node and pairwise constraints has been a building block in areas from optimization to computer vision.
We present a reinforcement learning solver for GM i.e. RGM that seeks the node correspondence between pairwise graphs.
Our method differs from the previous deep graph matching model in the sense that they are focused on the front-end feature extraction and affinity function learning.
arXiv Detail & Related papers (2020-12-16T13:48:48Z) - High-Order Information Matters: Learning Relation and Topology for
Occluded Person Re-Identification [84.43394420267794]
We propose a novel framework by learning high-order relation and topology information for discriminative features and robust alignment.
Our framework significantly outperforms state-of-the-art by6.5%mAP scores on Occluded-Duke dataset.
arXiv Detail & Related papers (2020-03-18T12:18:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.