Graph Convolutional Subspace Clustering: A Robust Subspace Clustering
Framework for Hyperspectral Image
- URL: http://arxiv.org/abs/2004.10476v1
- Date: Wed, 22 Apr 2020 10:09:19 GMT
- Title: Graph Convolutional Subspace Clustering: A Robust Subspace Clustering
Framework for Hyperspectral Image
- Authors: Yaoming Cai, Zijia Zhang, Zhihua Cai, Xiaobo Liu, Xinwei Jiang, and
Qin Yan
- Abstract summary: We present a novel subspace clustering framework called Graph Convolutional Subspace Clustering (GCSC) for robust HSI clustering.
Specifically, the framework recasts the self-expressiveness property of the data into the non-Euclidean domain.
We show that traditional subspace clustering models are the special forms of our framework with the Euclidean data.
- Score: 6.332208511335129
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Hyperspectral image (HSI) clustering is a challenging task due to the high
complexity of HSI data. Subspace clustering has been proven to be powerful for
exploiting the intrinsic relationship between data points. Despite the
impressive performance in the HSI clustering, traditional subspace clustering
methods often ignore the inherent structural information among data. In this
paper, we revisit the subspace clustering with graph convolution and present a
novel subspace clustering framework called Graph Convolutional Subspace
Clustering (GCSC) for robust HSI clustering. Specifically, the framework
recasts the self-expressiveness property of the data into the non-Euclidean
domain, which results in a more robust graph embedding dictionary. We show that
traditional subspace clustering models are the special forms of our framework
with the Euclidean data. Basing on the framework, we further propose two novel
subspace clustering models by using the Frobenius norm, namely Efficient GCSC
(EGCSC) and Efficient Kernel GCSC (EKGCSC). Both models have a globally optimal
closed-form solution, which makes them easier to implement, train, and apply in
practice. Extensive experiments on three popular HSI datasets demonstrate that
EGCSC and EKGCSC can achieve state-of-the-art clustering performance and
dramatically outperforms many existing methods with significant margins.
Related papers
- Self-Supervised Graph Embedding Clustering [70.36328717683297]
K-means one-step dimensionality reduction clustering method has made some progress in addressing the curse of dimensionality in clustering tasks.
We propose a unified framework that integrates manifold learning with K-means, resulting in the self-supervised graph embedding framework.
arXiv Detail & Related papers (2024-09-24T08:59:51Z) - Multiview Subspace Clustering of Hyperspectral Images based on Graph
Convolutional Networks [12.275530282665578]
This study proposes a multiview subspace clustering of hy-perspectral images (HSI) based on graph convolutional networks.
The model was evaluated on three popular HSI datasets, including Indian Pines, Pavia University, and Houston.
It achieved overall accuracies of 92.38%, 93.43%, and 83.82%, respectively, and significantly outperformed the state-of-the-art clustering methods.
arXiv Detail & Related papers (2024-03-03T10:19:18Z) - Contrastive Multi-view Subspace Clustering of Hyperspectral Images based
on Graph Convolutional Networks [14.978666092012856]
Subspace clustering is an effective approach for clustering hyperspectral images.
In this study, contrastive multi-view subspace clustering of HSI was proposed based on graph convolutional networks.
The proposed model effectively improves the clustering accuracy of HSI.
arXiv Detail & Related papers (2023-12-11T02:22:10Z) - Reinforcement Graph Clustering with Unknown Cluster Number [91.4861135742095]
We propose a new deep graph clustering method termed Reinforcement Graph Clustering.
In our proposed method, cluster number determination and unsupervised representation learning are unified into a uniform framework.
In order to conduct feedback actions, the clustering-oriented reward function is proposed to enhance the cohesion of the same clusters and separate the different clusters.
arXiv Detail & Related papers (2023-08-13T18:12:28Z) - Enhancing cluster analysis via topological manifold learning [0.3823356975862006]
We show that inferring the topological structure of a dataset before clustering can considerably enhance cluster detection.
We combine manifold learning method UMAP for inferring the topological structure with density-based clustering method DBSCAN.
arXiv Detail & Related papers (2022-07-01T15:53:39Z) - Self-supervised Contrastive Attributed Graph Clustering [110.52694943592974]
We propose a novel attributed graph clustering network, namely Self-supervised Contrastive Attributed Graph Clustering (SCAGC)
In SCAGC, by leveraging inaccurate clustering labels, a self-supervised contrastive loss, are designed for node representation learning.
For the OOS nodes, SCAGC can directly calculate their clustering labels.
arXiv Detail & Related papers (2021-10-15T03:25:28Z) - Very Compact Clusters with Structural Regularization via Similarity and
Connectivity [3.779514860341336]
We propose an end-to-end deep clustering algorithm, i.e., Very Compact Clusters (VCC) for the general datasets.
Our proposed approach achieves better clustering performance over most of the state-of-the-art clustering methods.
arXiv Detail & Related papers (2021-06-09T23:22:03Z) - Spatial-Spectral Clustering with Anchor Graph for Hyperspectral Image [88.60285937702304]
This paper proposes a novel unsupervised approach called spatial-spectral clustering with anchor graph (SSCAG) for HSI data clustering.
The proposed SSCAG is competitive against the state-of-the-art approaches.
arXiv Detail & Related papers (2021-04-24T08:09:27Z) - Scalable Hierarchical Agglomerative Clustering [65.66407726145619]
Existing scalable hierarchical clustering methods sacrifice quality for speed.
We present a scalable, agglomerative method for hierarchical clustering that does not sacrifice quality and scales to billions of data points.
arXiv Detail & Related papers (2020-10-22T15:58:35Z) - Learning to Cluster Faces via Confidence and Connectivity Estimation [136.5291151775236]
We propose a fully learnable clustering framework without requiring a large number of overlapped subgraphs.
Our method significantly improves clustering accuracy and thus performance of the recognition models trained on top, yet it is an order of magnitude more efficient than existing supervised methods.
arXiv Detail & Related papers (2020-04-01T13:39:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.