Polarized-VAE: Proximity Based Disentangled Representation Learning for
Text Generation
- URL: http://arxiv.org/abs/2004.10809v2
- Date: Mon, 25 Jan 2021 03:43:24 GMT
- Title: Polarized-VAE: Proximity Based Disentangled Representation Learning for
Text Generation
- Authors: Vikash Balasubramanian, Ivan Kobyzev, Hareesh Bahuleyan, Ilya Shapiro,
Olga Vechtomova
- Abstract summary: Polarized-VAE is an approach that disentangles attributes in the latent space based on proximity measures.
We apply our method to disentangle the semantics and syntax of sentences and carry out transfer experiments.
- Score: 12.191798515559622
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Learning disentangled representations of real-world data is a challenging
open problem. Most previous methods have focused on either supervised
approaches which use attribute labels or unsupervised approaches that
manipulate the factorization in the latent space of models such as the
variational autoencoder (VAE) by training with task-specific losses. In this
work, we propose polarized-VAE, an approach that disentangles select attributes
in the latent space based on proximity measures reflecting the similarity
between data points with respect to these attributes. We apply our method to
disentangle the semantics and syntax of sentences and carry out transfer
experiments. Polarized-VAE outperforms the VAE baseline and is competitive with
state-of-the-art approaches, while being more a general framework that is
applicable to other attribute disentanglement tasks.
Related papers
- Embedding Trajectory for Out-of-Distribution Detection in Mathematical Reasoning [50.84938730450622]
We propose a trajectory-based method TV score, which uses trajectory volatility for OOD detection in mathematical reasoning.
Our method outperforms all traditional algorithms on GLMs under mathematical reasoning scenarios.
Our method can be extended to more applications with high-density features in output spaces, such as multiple-choice questions.
arXiv Detail & Related papers (2024-05-22T22:22:25Z) - Cluster-level pseudo-labelling for source-free cross-domain facial
expression recognition [94.56304526014875]
We propose the first Source-Free Unsupervised Domain Adaptation (SFUDA) method for Facial Expression Recognition (FER)
Our method exploits self-supervised pretraining to learn good feature representations from the target data.
We validate the effectiveness of our method in four adaptation setups, proving that it consistently outperforms existing SFUDA methods when applied to FER.
arXiv Detail & Related papers (2022-10-11T08:24:50Z) - Feature Diversity Learning with Sample Dropout for Unsupervised Domain
Adaptive Person Re-identification [0.0]
This paper proposes a new approach to learn the feature representation with better generalization ability through limiting noisy pseudo labels.
We put forward a brand-new method referred as to Feature Diversity Learning (FDL) under the classic mutual-teaching architecture.
Experimental results show that our proposed FDL-SD achieves the state-of-the-art performance on multiple benchmark datasets.
arXiv Detail & Related papers (2022-01-25T10:10:48Z) - Regularizing Variational Autoencoder with Diversity and Uncertainty
Awareness [61.827054365139645]
Variational Autoencoder (VAE) approximates the posterior of latent variables based on amortized variational inference.
We propose an alternative model, DU-VAE, for learning a more Diverse and less Uncertain latent space.
arXiv Detail & Related papers (2021-10-24T07:58:13Z) - InteL-VAEs: Adding Inductive Biases to Variational Auto-Encoders via
Intermediary Latents [60.785317191131284]
We introduce a simple and effective method for learning VAEs with controllable biases by using an intermediary set of latent variables.
In particular, it allows us to impose desired properties like sparsity or clustering on learned representations.
We show that this, in turn, allows InteL-VAEs to learn both better generative models and representations.
arXiv Detail & Related papers (2021-06-25T16:34:05Z) - Regularization with Latent Space Virtual Adversarial Training [4.874780144224057]
Virtual Adversarial Training (VAT) has shown impressive results among recently developed regularization methods.
We propose LVAT, which injects perturbation in the latent space instead of the input space.
LVAT can generate adversarial samples flexibly, resulting in more adverse effects and thus more effective regularization.
arXiv Detail & Related papers (2020-11-26T08:51:38Z) - Strictly Batch Imitation Learning by Energy-based Distribution Matching [104.33286163090179]
Consider learning a policy purely on the basis of demonstrated behavior -- that is, with no access to reinforcement signals, no knowledge of transition dynamics, and no further interaction with the environment.
One solution is simply to retrofit existing algorithms for apprenticeship learning to work in the offline setting.
But such an approach leans heavily on off-policy evaluation or offline model estimation, and can be indirect and inefficient.
We argue that a good solution should be able to explicitly parameterize a policy, implicitly learn from rollout dynamics, and operate in an entirely offline fashion.
arXiv Detail & Related papers (2020-06-25T03:27:59Z) - MatchGAN: A Self-Supervised Semi-Supervised Conditional Generative
Adversarial Network [51.84251358009803]
We present a novel self-supervised learning approach for conditional generative adversarial networks (GANs) under a semi-supervised setting.
We perform augmentation by randomly sampling sensible labels from the label space of the few labelled examples available.
Our method surpasses the baseline with only 20% of the labelled examples used to train the baseline.
arXiv Detail & Related papers (2020-06-11T17:14:55Z) - NestedVAE: Isolating Common Factors via Weak Supervision [45.366986365879505]
We identify the connection between the task of bias reduction and that of isolating factors common between domains.
To isolate the common factors we combine the theory of deep latent variable models with information bottleneck theory.
Two outer VAEs with shared weights attempt to reconstruct the input and infer a latent space, whilst a nested VAE attempts to reconstruct the latent representation of one image, from the latent representation of its paired image.
arXiv Detail & Related papers (2020-02-26T15:49:57Z) - Learning Flat Latent Manifolds with VAEs [16.725880610265378]
We propose an extension to the framework of variational auto-encoders, where the Euclidean metric is a proxy for the similarity between data points.
We replace the compact prior typically used in variational auto-encoders with a recently presented, more expressive hierarchical one.
We evaluate our method on a range of data-sets, including a video-tracking benchmark.
arXiv Detail & Related papers (2020-02-12T09:54:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.