SIGN: Scalable Inception Graph Neural Networks
- URL: http://arxiv.org/abs/2004.11198v3
- Date: Tue, 3 Nov 2020 19:20:22 GMT
- Title: SIGN: Scalable Inception Graph Neural Networks
- Authors: Fabrizio Frasca, Emanuele Rossi, Davide Eynard, Ben Chamberlain,
Michael Bronstein, Federico Monti
- Abstract summary: We propose a new, efficient and scalable graph deep learning architecture that sidesteps the need for graph sampling.
Our architecture allows using different local graph operators to best suit the task at hand.
We obtain state-of-the-art results on ogbn-papers100M, the largest public graph dataset, with over 110 million nodes and 1.5 billion edges.
- Score: 4.5158585619109495
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph representation learning has recently been applied to a broad spectrum
of problems ranging from computer graphics and chemistry to high energy physics
and social media. The popularity of graph neural networks has sparked interest,
both in academia and in industry, in developing methods that scale to very
large graphs such as Facebook or Twitter social networks. In most of these
approaches, the computational cost is alleviated by a sampling strategy
retaining a subset of node neighbors or subgraphs at training time. In this
paper we propose a new, efficient and scalable graph deep learning architecture
which sidesteps the need for graph sampling by using graph convolutional
filters of different size that are amenable to efficient precomputation,
allowing extremely fast training and inference. Our architecture allows using
different local graph operators (e.g. motif-induced adjacency matrices or
Personalized Page Rank diffusion matrix) to best suit the task at hand. We
conduct extensive experimental evaluation on various open benchmarks and show
that our approach is competitive with other state-of-the-art architectures,
while requiring a fraction of the training and inference time. Moreover, we
obtain state-of-the-art results on ogbn-papers100M, the largest public graph
dataset, with over 110 million nodes and 1.5 billion edges.
Related papers
- HUGE: Huge Unsupervised Graph Embeddings with TPUs [6.108914274067702]
Graph Embedding is a process of creating a continuous representation of nodes in a graph.
A high-performance graph embedding architecture leveraging amounts of high-bandwidth memory is presented.
We verify the embedding space quality on real and synthetic large-scale datasets.
arXiv Detail & Related papers (2023-07-26T20:29:15Z) - State of the Art and Potentialities of Graph-level Learning [54.68482109186052]
Graph-level learning has been applied to many tasks including comparison, regression, classification, and more.
Traditional approaches to learning a set of graphs rely on hand-crafted features, such as substructures.
Deep learning has helped graph-level learning adapt to the growing scale of graphs by extracting features automatically and encoding graphs into low-dimensional representations.
arXiv Detail & Related papers (2023-01-14T09:15:49Z) - Optimal Propagation for Graph Neural Networks [51.08426265813481]
We propose a bi-level optimization approach for learning the optimal graph structure.
We also explore a low-rank approximation model for further reducing the time complexity.
arXiv Detail & Related papers (2022-05-06T03:37:00Z) - Neural Graph Matching for Pre-training Graph Neural Networks [72.32801428070749]
Graph neural networks (GNNs) have been shown powerful capacity at modeling structural data.
We present a novel Graph Matching based GNN Pre-Training framework, called GMPT.
The proposed method can be applied to fully self-supervised pre-training and coarse-grained supervised pre-training.
arXiv Detail & Related papers (2022-03-03T09:53:53Z) - Learning through structure: towards deep neuromorphic knowledge graph
embeddings [0.5906031288935515]
We propose a strategy to map deep graph learning architectures for knowledge graph reasoning to neuromorphic architectures.
Based on the insight that randomly and untrained graph neural networks are able to preserve local graph structures, we compose a frozen neural network shallow knowledge graph embedding models.
We experimentally show that already on conventional computing hardware, this leads to a significant speedup and memory reduction while maintaining a competitive performance level.
arXiv Detail & Related papers (2021-09-21T18:01:04Z) - GraphTheta: A Distributed Graph Neural Network Learning System With
Flexible Training Strategy [5.466414428765544]
We present a new distributed graph learning system GraphTheta.
It supports multiple training strategies and enables efficient and scalable learning on big graphs.
This work represents the largest edge-attributed GNN learning task conducted on a billion-scale network in the literature.
arXiv Detail & Related papers (2021-04-21T14:51:33Z) - Co-embedding of Nodes and Edges with Graph Neural Networks [13.020745622327894]
Graph embedding is a way to transform and encode the data structure in high dimensional and non-Euclidean feature space.
CensNet is a general graph embedding framework, which embeds both nodes and edges to a latent feature space.
Our approach achieves or matches the state-of-the-art performance in four graph learning tasks.
arXiv Detail & Related papers (2020-10-25T22:39:31Z) - MathNet: Haar-Like Wavelet Multiresolution-Analysis for Graph
Representation and Learning [31.42901131602713]
We propose a framework for graph neural networks with multiresolution Haar-like wavelets, or MathNet, with interrelated convolution and pooling strategies.
The proposed MathNet outperforms various existing GNN models, especially on big data sets.
arXiv Detail & Related papers (2020-07-22T05:00:59Z) - Scaling Graph Neural Networks with Approximate PageRank [64.92311737049054]
We present the PPRGo model which utilizes an efficient approximation of information diffusion in GNNs.
In addition to being faster, PPRGo is inherently scalable, and can be trivially parallelized for large datasets like those found in industry settings.
We show that training PPRGo and predicting labels for all nodes in this graph takes under 2 minutes on a single machine, far outpacing other baselines on the same graph.
arXiv Detail & Related papers (2020-07-03T09:30:07Z) - GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training [62.73470368851127]
Graph representation learning has emerged as a powerful technique for addressing real-world problems.
We design Graph Contrastive Coding -- a self-supervised graph neural network pre-training framework.
We conduct experiments on three graph learning tasks and ten graph datasets.
arXiv Detail & Related papers (2020-06-17T16:18:35Z) - Geometrically Principled Connections in Graph Neural Networks [66.51286736506658]
We argue geometry should remain the primary driving force behind innovation in the emerging field of geometric deep learning.
We relate graph neural networks to widely successful computer graphics and data approximation models: radial basis functions (RBFs)
We introduce affine skip connections, a novel building block formed by combining a fully connected layer with any graph convolution operator.
arXiv Detail & Related papers (2020-04-06T13:25:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.