AutoHR: A Strong End-to-end Baseline for Remote Heart Rate Measurement
with Neural Searching
- URL: http://arxiv.org/abs/2004.12292v1
- Date: Sun, 26 Apr 2020 05:43:21 GMT
- Title: AutoHR: A Strong End-to-end Baseline for Remote Heart Rate Measurement
with Neural Searching
- Authors: Zitong Yu, Xiaobai Li, Xuesong Niu, Jingang Shi, Guoying Zhao
- Abstract summary: We investigate the reason why existing end-to-end networks perform poorly in challenging conditions and establish a strong baseline for remote HR measurement with architecture search (NAS)
Comprehensive experiments are performed on three benchmark datasets on both intra-temporal and cross-dataset testing.
- Score: 76.4844593082362
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Remote photoplethysmography (rPPG), which aims at measuring heart activities
without any contact, has great potential in many applications (e.g., remote
healthcare). Existing end-to-end rPPG and heart rate (HR) measurement methods
from facial videos are vulnerable to the less-constrained scenarios (e.g., with
head movement and bad illumination). In this letter, we explore the reason why
existing end-to-end networks perform poorly in challenging conditions and
establish a strong end-to-end baseline (AutoHR) for remote HR measurement with
neural architecture search (NAS). The proposed method includes three parts: 1)
a powerful searched backbone with novel Temporal Difference Convolution (TDC),
intending to capture intrinsic rPPG-aware clues between frames; 2) a hybrid
loss function considering constraints from both time and frequency domains; and
3) spatio-temporal data augmentation strategies for better representation
learning. Comprehensive experiments are performed on three benchmark datasets
to show our superior performance on both intra- and cross-dataset testing.
Related papers
- FunnelNet: An End-to-End Deep Learning Framework to Monitor Digital Heart Murmur in Real-Time [5.408260756721024]
Heart murmurs are abnormal sounds caused by turbulent blood flow within the heart.
This study aims to develop a novel end-to-end real-time heart murmur detection approach using traditional and depthwise convolutional networks.
arXiv Detail & Related papers (2024-05-10T03:12:17Z) - Predicting Infant Brain Connectivity with Federated Multi-Trajectory
GNNs using Scarce Data [54.55126643084341]
Existing deep learning solutions suffer from three major limitations.
We introduce FedGmTE-Net++, a federated graph-based multi-trajectory evolution network.
Using the power of federation, we aggregate local learnings among diverse hospitals with limited datasets.
arXiv Detail & Related papers (2024-01-01T10:20:01Z) - PointHPS: Cascaded 3D Human Pose and Shape Estimation from Point Clouds [99.60575439926963]
We propose a principled framework, PointHPS, for accurate 3D HPS from point clouds captured in real-world settings.
PointHPS iteratively refines point features through a cascaded architecture.
Extensive experiments demonstrate that PointHPS, with its powerful point feature extraction and processing scheme, outperforms State-of-the-Art methods.
arXiv Detail & Related papers (2023-08-28T11:10:14Z) - Extraction of volumetric indices from echocardiography: which deep
learning solution for clinical use? [6.144041824426555]
We show that the proposed 3D nnU-Net outperforms alternative 2D and recurrent segmentation methods.
Overall, the experimental results suggest that with sufficient training data, 3D nnU-Net could become the first automated tool to meet the standards of an everyday clinical device.
arXiv Detail & Related papers (2023-05-03T09:38:52Z) - MMA-RNN: A Multi-level Multi-task Attention-based Recurrent Neural
Network for Discrimination and Localization of Atrial Fibrillation [1.8037893225125925]
This paper proposes the Multi-level Multi-task Attention-based Recurrent Neural Network for three-class discrimination on patients and localization of the exact timing of AF episodes.
The model is designed as an end-to-end framework to enhance information interaction and reduce error accumulation.
arXiv Detail & Related papers (2023-02-07T19:59:55Z) - PhysFormer: Facial Video-based Physiological Measurement with Temporal
Difference Transformer [55.936527926778695]
Recent deep learning approaches focus on mining subtle r clues using convolutional neural networks with limited-temporal receptive fields.
In this paper, we propose the PhysFormer, an end-to-end video transformer based architecture.
arXiv Detail & Related papers (2021-11-23T18:57:11Z) - Feature Aggregation and Refinement Network for 2D AnatomicalLandmark
Detection [0.0]
We propose a novel deep network, named feature aggregation and refinement network (FARNet) for the automatic detection of anatomical landmarks.
Our network has been evaluated on three publicly available anatomical landmark detection datasets.
arXiv Detail & Related papers (2021-11-01T02:16:13Z) - Non-contact PPG Signal and Heart Rate Estimation with Multi-hierarchical
Convolutional Network [12.119293125608976]
Heart rate (HR) are important physiological parameters of the human body.
This study presents an efficient multi-archhierical- convolutional network that can estimate HR from face video clips.
arXiv Detail & Related papers (2021-04-06T03:04:27Z) - Generalizing Face Forgery Detection with High-frequency Features [63.33397573649408]
Current CNN-based detectors tend to overfit to method-specific color textures and thus fail to generalize.
We propose to utilize the high-frequency noises for face forgery detection.
The first is the multi-scale high-frequency feature extraction module that extracts high-frequency noises at multiple scales.
The second is the residual-guided spatial attention module that guides the low-level RGB feature extractor to concentrate more on forgery traces from a new perspective.
arXiv Detail & Related papers (2021-03-23T08:19:21Z) - Multi-view Depth Estimation using Epipolar Spatio-Temporal Networks [87.50632573601283]
We present a novel method for multi-view depth estimation from a single video.
Our method achieves temporally coherent depth estimation results by using a novel Epipolar Spatio-Temporal (EST) transformer.
To reduce the computational cost, inspired by recent Mixture-of-Experts models, we design a compact hybrid network.
arXiv Detail & Related papers (2020-11-26T04:04:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.