Heterogeneous Graph Neural Networks for Extractive Document
Summarization
- URL: http://arxiv.org/abs/2004.12393v1
- Date: Sun, 26 Apr 2020 14:38:11 GMT
- Title: Heterogeneous Graph Neural Networks for Extractive Document
Summarization
- Authors: Danqing Wang, Pengfei Liu, Yining Zheng, Xipeng Qiu, Xuanjing Huang
- Abstract summary: Cross-sentence relations are a crucial step in extractive document summarization.
We present a graph-based neural network for extractive summarization (HeterSumGraph)
We introduce different types of nodes into graph-based neural networks for extractive document summarization.
- Score: 101.17980994606836
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As a crucial step in extractive document summarization, learning
cross-sentence relations has been explored by a plethora of approaches. An
intuitive way is to put them in the graph-based neural network, which has a
more complex structure for capturing inter-sentence relationships. In this
paper, we present a heterogeneous graph-based neural network for extractive
summarization (HeterSumGraph), which contains semantic nodes of different
granularity levels apart from sentences. These additional nodes act as the
intermediary between sentences and enrich the cross-sentence relations.
Besides, our graph structure is flexible in natural extension from a
single-document setting to multi-document via introducing document nodes. To
our knowledge, we are the first one to introduce different types of nodes into
graph-based neural networks for extractive document summarization and perform a
comprehensive qualitative analysis to investigate their benefits. The code will
be released on Github
Related papers
- GraphLSS: Integrating Lexical, Structural, and Semantic Features for Long Document Extractive Summarization [19.505955857963855]
We present GraphLSS, a heterogeneous graph construction for long document extractive summarization.
It defines two levels of information (words and sentences) and four types of edges (sentence semantic similarity, sentence occurrence order, word in sentence, and word semantic similarity) without any need for auxiliary learning models.
arXiv Detail & Related papers (2024-10-25T23:48:59Z) - GNN-LoFI: a Novel Graph Neural Network through Localized Feature-based
Histogram Intersection [51.608147732998994]
Graph neural networks are increasingly becoming the framework of choice for graph-based machine learning.
We propose a new graph neural network architecture that substitutes classical message passing with an analysis of the local distribution of node features.
arXiv Detail & Related papers (2024-01-17T13:04:23Z) - NodeFormer: A Scalable Graph Structure Learning Transformer for Node
Classification [70.51126383984555]
We introduce a novel all-pair message passing scheme for efficiently propagating node signals between arbitrary nodes.
The efficient computation is enabled by a kernerlized Gumbel-Softmax operator.
Experiments demonstrate the promising efficacy of the method in various tasks including node classification on graphs.
arXiv Detail & Related papers (2023-06-14T09:21:15Z) - Rethinking Explaining Graph Neural Networks via Non-parametric Subgraph
Matching [68.35685422301613]
We propose a novel non-parametric subgraph matching framework, dubbed MatchExplainer, to explore explanatory subgraphs.
It couples the target graph with other counterpart instances and identifies the most crucial joint substructure by minimizing the node corresponding-based distance.
Experiments on synthetic and real-world datasets show the effectiveness of our MatchExplainer by outperforming all state-of-the-art parametric baselines with significant margins.
arXiv Detail & Related papers (2023-01-07T05:14:45Z) - Sparse Structure Learning via Graph Neural Networks for Inductive
Document Classification [2.064612766965483]
We propose a novel GNN-based sparse structure learning model for inductive document classification.
Our model collects a set of trainable edges connecting disjoint words between sentences and employs structure learning to sparsely select edges with dynamic contextual dependencies.
Experiments on several real-world datasets demonstrate that the proposed model outperforms most state-of-the-art results.
arXiv Detail & Related papers (2021-12-13T02:36:04Z) - SHGNN: Structure-Aware Heterogeneous Graph Neural Network [77.78459918119536]
This paper proposes a novel Structure-Aware Heterogeneous Graph Neural Network (SHGNN) to address the above limitations.
We first utilize a feature propagation module to capture the local structure information of intermediate nodes in the meta-path.
Next, we use a tree-attention aggregator to incorporate the graph structure information into the aggregation module on the meta-path.
Finally, we leverage a meta-path aggregator to fuse the information aggregated from different meta-paths.
arXiv Detail & Related papers (2021-12-12T14:18:18Z) - Augmented Abstractive Summarization With Document-LevelSemantic Graph [3.0272794341021667]
Previous abstractive methods apply sequence-to-sequence structures to generate summary without a module.
We utilize semantic graph to boost the generation performance.
A novel neural decoder is presented to leverage the information of such entity graphs.
arXiv Detail & Related papers (2021-09-13T15:12:34Z) - Multiplex Graph Neural Network for Extractive Text Summarization [34.185093491514394]
Extractive text summarization aims at extracting the most representative sentences from a given document as its summary.
We propose a novel Multiplex Graph Convolutional Network (Multi-GCN) to jointly model different types of relationships among sentences and words.
Based on Multi-GCN, we propose a Multiplex Graph Summarization (Multi-GraS) model for extractive text summarization.
arXiv Detail & Related papers (2021-08-29T16:11:01Z) - Learning the Implicit Semantic Representation on Graph-Structured Data [57.670106959061634]
Existing representation learning methods in graph convolutional networks are mainly designed by describing the neighborhood of each node as a perceptual whole.
We propose a Semantic Graph Convolutional Networks (SGCN) that explores the implicit semantics by learning latent semantic-paths in graphs.
arXiv Detail & Related papers (2021-01-16T16:18:43Z) - Neural Topic Modeling by Incorporating Document Relationship Graph [18.692100955163713]
Graph Topic Model (GTM) is a GNN based neural topic model that represents a corpus as a document relationship graph.
Documents and words in the corpus become nodes in the graph and are connected based on document-word co-occurrences.
arXiv Detail & Related papers (2020-09-29T12:45:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.