Single Shot 6D Object Pose Estimation
- URL: http://arxiv.org/abs/2004.12729v1
- Date: Mon, 27 Apr 2020 11:59:11 GMT
- Title: Single Shot 6D Object Pose Estimation
- Authors: Kilian Kleeberger and Marco F. Huber
- Abstract summary: We introduce a novel single shot approach for 6D object pose estimation of rigid objects based on depth images.
A fully convolutional neural network is employed, where the 3D input data is spatially discretized and pose estimation is considered as a regression task.
With 65 fps on a GPU, our Object Pose Network (OP-Net) is extremely fast, is optimized end-to-end, and estimates the 6D pose of multiple objects in the image simultaneously.
- Score: 11.37625512264302
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we introduce a novel single shot approach for 6D object pose
estimation of rigid objects based on depth images. For this purpose, a fully
convolutional neural network is employed, where the 3D input data is spatially
discretized and pose estimation is considered as a regression task that is
solved locally on the resulting volume elements. With 65 fps on a GPU, our
Object Pose Network (OP-Net) is extremely fast, is optimized end-to-end, and
estimates the 6D pose of multiple objects in the image simultaneously. Our
approach does not require manually 6D pose-annotated real-world datasets and
transfers to the real world, although being entirely trained on synthetic data.
The proposed method is evaluated on public benchmark datasets, where we can
demonstrate that state-of-the-art methods are significantly outperformed.
Related papers
- Rigidity-Aware Detection for 6D Object Pose Estimation [60.88857851869196]
Most recent 6D object pose estimation methods first use object detection to obtain 2D bounding boxes before actually regressing the pose.
We propose a rigidity-aware detection method exploiting the fact that, in 6D pose estimation, the target objects are rigid.
Key to the success of our approach is a visibility map, which we propose to build using a minimum barrier distance between every pixel in the bounding box and the box boundary.
arXiv Detail & Related papers (2023-03-22T09:02:54Z) - Category-Level 6D Object Pose Estimation in the Wild: A Semi-Supervised
Learning Approach and A New Dataset [12.40437099476348]
We generalize category-level 6D object pose estimation in the wild with semi-supervised learning.
We propose a new model, called Rendering for Pose estimation network RePoNet, that is jointly trained using the free ground-truths with the synthetic data.
Our method outperforms state-of-the-art methods on the previous dataset and our Wild6D test set (with manual annotations for evaluation) by a large margin.
arXiv Detail & Related papers (2022-06-30T17:30:57Z) - Unseen Object 6D Pose Estimation: A Benchmark and Baselines [62.8809734237213]
We propose a new task that enables and facilitates algorithms to estimate the 6D pose estimation of novel objects during testing.
We collect a dataset with both real and synthetic images and up to 48 unseen objects in the test set.
By training an end-to-end 3D correspondences network, our method finds corresponding points between an unseen object and a partial view RGBD image accurately and efficiently.
arXiv Detail & Related papers (2022-06-23T16:29:53Z) - Coupled Iterative Refinement for 6D Multi-Object Pose Estimation [64.7198752089041]
Given a set of known 3D objects and an RGB or RGB-D input image, we detect and estimate the 6D pose of each object.
Our approach iteratively refines both pose and correspondence in a tightly coupled manner, allowing us to dynamically remove outliers to improve accuracy.
arXiv Detail & Related papers (2022-04-26T18:00:08Z) - NeRF-Pose: A First-Reconstruct-Then-Regress Approach for
Weakly-supervised 6D Object Pose Estimation [44.42449011619408]
We present a weakly-supervised reconstruction-based pipeline, named NeRF-Pose, which needs only 2D object segmentation and known relative camera poses during training.
A NeRF-enabled RAN+SAC algorithm is used to estimate stable and accurate pose from the predicted correspondences.
Experiments on LineMod-Occlusion show that the proposed method has state-of-the-art accuracy in comparison to the best 6D pose estimation methods.
arXiv Detail & Related papers (2022-03-09T15:28:02Z) - OVE6D: Object Viewpoint Encoding for Depth-based 6D Object Pose
Estimation [12.773040823634908]
We propose a universal framework, called OVE6D, for model-based 6D object pose estimation from a single depth image and a target object mask.
Our model is trained using purely synthetic data rendered from ShapeNet, and, unlike most of the existing methods, it generalizes well on new real-world objects without any fine-tuning.
We show that OVE6D outperforms some contemporary deep learning-based pose estimation methods specifically trained for individual objects or datasets with real-world training data.
arXiv Detail & Related papers (2022-03-02T12:51:33Z) - SO-Pose: Exploiting Self-Occlusion for Direct 6D Pose Estimation [98.83762558394345]
SO-Pose is a framework for regressing all 6 degrees-of-freedom (6DoF) for the object pose in a cluttered environment from a single RGB image.
We introduce a novel reasoning about self-occlusion, in order to establish a two-layer representation for 3D objects.
Cross-layer consistencies that align correspondences, self-occlusion and 6D pose, we can further improve accuracy and robustness.
arXiv Detail & Related papers (2021-08-18T19:49:29Z) - FS-Net: Fast Shape-based Network for Category-Level 6D Object Pose
Estimation with Decoupled Rotation Mechanism [49.89268018642999]
We propose a fast shape-based network (FS-Net) with efficient category-level feature extraction for 6D pose estimation.
The proposed method achieves state-of-the-art performance in both category- and instance-level 6D object pose estimation.
arXiv Detail & Related papers (2021-03-12T03:07:24Z) - Spatial Attention Improves Iterative 6D Object Pose Estimation [52.365075652976735]
We propose a new method for 6D pose estimation refinement from RGB images.
Our main insight is that after the initial pose estimate, it is important to pay attention to distinct spatial features of the object.
We experimentally show that this approach learns to attend to salient spatial features and learns to ignore occluded parts of the object, leading to better pose estimation across datasets.
arXiv Detail & Related papers (2021-01-05T17:18:52Z) - EfficientPose: An efficient, accurate and scalable end-to-end 6D multi
object pose estimation approach [0.0]
We introduce EfficientPose, a new approach for 6D object pose estimation.
It is highly accurate, efficient and scalable over a wide range of computational resources.
It can detect the 2D bounding box of multiple objects and instances as well as estimate their full 6D poses in a single shot.
arXiv Detail & Related papers (2020-11-09T10:23:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.