Learning Neural-Symbolic Descriptive Planning Models via Cube-Space
Priors: The Voyage Home (to STRIPS)
- URL: http://arxiv.org/abs/2004.12850v3
- Date: Tue, 11 Aug 2020 20:05:30 GMT
- Title: Learning Neural-Symbolic Descriptive Planning Models via Cube-Space
Priors: The Voyage Home (to STRIPS)
- Authors: Masataro Asai and Christian Muise
- Abstract summary: We show that our neuro-symbolic architecture is trained end-to-end to produce a succinct and effective discrete state transition model from images alone.
Our target representation is already in a form that off-the-shelf solvers can consume, and opens the door to the rich array of modern search capabilities.
- Score: 13.141761152863868
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We achieved a new milestone in the difficult task of enabling agents to learn
about their environment autonomously. Our neuro-symbolic architecture is
trained end-to-end to produce a succinct and effective discrete state
transition model from images alone. Our target representation (the Planning
Domain Definition Language) is already in a form that off-the-shelf solvers can
consume, and opens the door to the rich array of modern heuristic search
capabilities. We demonstrate how the sophisticated innate prior we place on the
learning process significantly reduces the complexity of the learned
representation, and reveals a connection to the graph-theoretic notion of
"cube-like graphs", thus opening the door to a deeper understanding of the
ideal properties for learned symbolic representations. We show that the
powerful domain-independent heuristics allow our system to solve visual
15-Puzzle instances which are beyond the reach of blind search, without
resorting to the Reinforcement Learning approach that requires a huge amount of
training on the domain-dependent reward information.
Related papers
- VisualPredicator: Learning Abstract World Models with Neuro-Symbolic Predicates for Robot Planning [86.59849798539312]
We present Neuro-Symbolic Predicates, a first-order abstraction language that combines the strengths of symbolic and neural knowledge representations.
We show that our approach offers better sample complexity, stronger out-of-distribution generalization, and improved interpretability.
arXiv Detail & Related papers (2024-10-30T16:11:05Z) - The Dynamic Net Architecture: Learning Robust and Holistic Visual Representations Through Self-Organizing Networks [3.9848584845601014]
We present a novel intelligent-system architecture called "Dynamic Net Architecture" (DNA)
DNA relies on recurrence-stabilized networks and discuss it in application to vision.
arXiv Detail & Related papers (2024-07-08T06:22:10Z) - Emergence and Function of Abstract Representations in Self-Supervised
Transformers [0.0]
We study the inner workings of small-scale transformers trained to reconstruct partially masked visual scenes.
We show that the network develops intermediate abstract representations, or abstractions, that encode all semantic features of the dataset.
Using precise manipulation experiments, we demonstrate that abstractions are central to the network's decision-making process.
arXiv Detail & Related papers (2023-12-08T20:47:15Z) - Goal Space Abstraction in Hierarchical Reinforcement Learning via
Set-Based Reachability Analysis [0.5409704301731713]
We introduce a Feudal HRL algorithm that concurrently learns both the goal representation and a hierarchical policy.
We evaluate our approach on complex navigation tasks, showing the learned representation is interpretable, transferrable and results in data efficient learning.
arXiv Detail & Related papers (2023-09-14T12:39:26Z) - Goal Space Abstraction in Hierarchical Reinforcement Learning via
Reachability Analysis [0.0]
We propose a developmental mechanism for subgoal discovery via an emergent representation that abstracts (i.e., groups together) sets of environment states.
We create a HRL algorithm that gradually learns this representation along with the policies and evaluate it on navigation tasks to show the learned representation is interpretable and results in data efficiency.
arXiv Detail & Related papers (2023-09-12T06:53:11Z) - On Binding Objects to Symbols: Learning Physical Concepts to Understand
Real from Fake [155.6741526791004]
We revisit the classic signal-to-symbol barrier in light of the remarkable ability of deep neural networks to generate synthetic data.
We characterize physical objects as abstract concepts and use the previous analysis to show that physical objects can be encoded by finite architectures.
We conclude that binding physical entities to digital identities is possible in finite time with finite resources.
arXiv Detail & Related papers (2022-07-25T17:21:59Z) - Stochastic Coherence Over Attention Trajectory For Continuous Learning
In Video Streams [64.82800502603138]
This paper proposes a novel neural-network-based approach to progressively and autonomously develop pixel-wise representations in a video stream.
The proposed method is based on a human-like attention mechanism that allows the agent to learn by observing what is moving in the attended locations.
Our experiments leverage 3D virtual environments and they show that the proposed agents can learn to distinguish objects just by observing the video stream.
arXiv Detail & Related papers (2022-04-26T09:52:31Z) - Temporal Abstractions-Augmented Temporally Contrastive Learning: An
Alternative to the Laplacian in RL [140.12803111221206]
In reinforcement learning, the graph Laplacian has proved to be a valuable tool in the task-agnostic setting.
We propose an alternative method that is able to recover, in a non-uniform-prior setting, the expressiveness and the desired properties of the Laplacian representation.
We find that our method succeeds as an alternative to the Laplacian in the non-uniform setting and scales to challenging continuous control environments.
arXiv Detail & Related papers (2022-03-21T22:07:48Z) - Reward Propagation Using Graph Convolutional Networks [61.32891095232801]
We propose a new framework for learning potential functions by leveraging ideas from graph representation learning.
Our approach relies on Graph Convolutional Networks which we use as a key ingredient in combination with the probabilistic inference view of reinforcement learning.
arXiv Detail & Related papers (2020-10-06T04:38:16Z) - Mutual Information Maximization for Robust Plannable Representations [82.83676853746742]
We present MIRO, an information theoretic representational learning algorithm for model-based reinforcement learning.
We show that our approach is more robust than reconstruction objectives in the presence of distractors and cluttered scenes.
arXiv Detail & Related papers (2020-05-16T21:58:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.