A Tailored Pre-Training Model for Task-Oriented Dialog Generation
- URL: http://arxiv.org/abs/2004.13835v1
- Date: Fri, 24 Apr 2020 09:25:45 GMT
- Title: A Tailored Pre-Training Model for Task-Oriented Dialog Generation
- Authors: Jing Gu, Qingyang Wu, Chongruo Wu, Weiyan Shi, Zhou Yu
- Abstract summary: We propose a Pre-trained Role Alternating Language model (PRAL) for task-oriented conversational systems.
We introduce a task-oriented dialog pretraining dataset by cleaning 13 existing data sets.
The results show that PRAL performs better or on par with state-of-the-art methods.
- Score: 60.05269529832447
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The recent success of large pre-trained language models such as BERT and
GPT-2 has suggested the effectiveness of incorporating language priors in
downstream dialog generation tasks. However, the performance of pre-trained
models on the dialog task is not as optimal as expected. In this paper, we
propose a Pre-trained Role Alternating Language model (PRAL), designed
specifically for task-oriented conversational systems. We adopted (Wu et al.,
2019) that models two speakers separately. We also design several techniques,
such as start position randomization, knowledge distillation, and history
discount to improve pre-training performance. We introduce a task-oriented
dialog pretraining dataset by cleaning 13 existing data sets. We test PRAL on
three different downstream tasks. The results show that PRAL performs better or
on par with state-of-the-art methods.
Related papers
- FutureTOD: Teaching Future Knowledge to Pre-trained Language Model for
Task-Oriented Dialogue [20.79359173822053]
We propose a novel dialogue pre-training model, FutureTOD, which distills future knowledge to the representation of the previous dialogue context.
Our intuition is that a good dialogue representation both learns local context information and predicts future information.
arXiv Detail & Related papers (2023-06-17T10:40:07Z) - OPAL: Ontology-Aware Pretrained Language Model for End-to-End
Task-Oriented Dialogue [40.62090743056549]
This paper presents an ontology-aware pretrained language model (OPAL) for end-to-end task-oriented dialogue (TOD)
Unlike chit-chat dialogue models, task-oriented dialogue models fulfill at least two task-specific modules: dialogue state tracker (DST) and response generator (RG)
arXiv Detail & Related papers (2022-09-10T04:38:27Z) - DialogVED: A Pre-trained Latent Variable Encoder-Decoder Model for
Dialog Response Generation [80.45816053153722]
DialogVED introduces continuous latent variables into the enhanced encoder-decoder pre-training framework to increase the relevance and diversity of responses.
We conduct experiments on PersonaChat, DailyDialog, and DSTC7-AVSD benchmarks for response generation.
arXiv Detail & Related papers (2022-04-27T16:18:15Z) - A Generative Language Model for Few-shot Aspect-Based Sentiment Analysis [90.24921443175514]
We focus on aspect-based sentiment analysis, which involves extracting aspect term, category, and predicting their corresponding polarities.
We propose to reformulate the extraction and prediction tasks into the sequence generation task, using a generative language model with unidirectional attention.
Our approach outperforms the previous state-of-the-art (based on BERT) on average performance by a large margins in few-shot and full-shot settings.
arXiv Detail & Related papers (2022-04-11T18:31:53Z) - Towards Generalized Models for Task-oriented Dialogue Modeling on Spoken
Conversations [22.894541507068933]
This paper presents our approach to build generalized models for the Knowledge-grounded Task-oriented Dialogue Modeling on Spoken Conversations Challenge of DSTC-10.
We employ extensive data augmentation strategies on written data, including artificial error injection and round-trip text-speech transformation.
Our approach ranks third on the objective evaluation and second on the final official human evaluation.
arXiv Detail & Related papers (2022-03-08T12:26:57Z) - Recent Advances in Natural Language Processing via Large Pre-Trained
Language Models: A Survey [67.82942975834924]
Large, pre-trained language models such as BERT have drastically changed the Natural Language Processing (NLP) field.
We present a survey of recent work that uses these large language models to solve NLP tasks via pre-training then fine-tuning, prompting, or text generation approaches.
arXiv Detail & Related papers (2021-11-01T20:08:05Z) - Multi-Task Pre-Training for Plug-and-Play Task-Oriented Dialogue System [26.837972034630003]
PPTOD is a unified plug-and-play model for task-oriented dialogue.
We extensively test our model on three benchmark TOD tasks, including end-to-end dialogue modelling, dialogue state tracking, and intent classification.
arXiv Detail & Related papers (2021-09-29T22:02:18Z) - Unsupervised Paraphrasing with Pretrained Language Models [85.03373221588707]
We propose a training pipeline that enables pre-trained language models to generate high-quality paraphrases in an unsupervised setting.
Our recipe consists of task-adaptation, self-supervision, and a novel decoding algorithm named Dynamic Blocking.
We show with automatic and human evaluations that our approach achieves state-of-the-art performance on both the Quora Question Pair and the ParaNMT datasets.
arXiv Detail & Related papers (2020-10-24T11:55:28Z) - TOD-BERT: Pre-trained Natural Language Understanding for Task-Oriented
Dialogue [113.45485470103762]
In this work, we unify nine human-human and multi-turn task-oriented dialogue datasets for language modeling.
To better model dialogue behavior during pre-training, we incorporate user and system tokens into the masked language modeling.
arXiv Detail & Related papers (2020-04-15T04:09:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.