How Chaotic Are Recurrent Neural Networks?
- URL: http://arxiv.org/abs/2004.13838v1
- Date: Tue, 28 Apr 2020 21:14:38 GMT
- Title: How Chaotic Are Recurrent Neural Networks?
- Authors: Pourya Vakilipourtakalou, Lili Mou
- Abstract summary: Recurrent neural networks (RNNs) are non-linear dynamic systems.
We show that a vanilla or long short term memory (LSTM) RNN does not exhibit chaotic behavior along the training process in real applications such as text generation.
- Score: 22.236891108918396
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recurrent neural networks (RNNs) are non-linear dynamic systems. Previous
work believes that RNN may suffer from the phenomenon of chaos, where the
system is sensitive to initial states and unpredictable in the long run. In
this paper, however, we perform a systematic empirical analysis, showing that a
vanilla or long short term memory (LSTM) RNN does not exhibit chaotic behavior
along the training process in real applications such as text generation. Our
findings suggest that future work in this direction should address the other
side of non-linear dynamics for RNN.
Related papers
- Recurrent Neural Networks Learn to Store and Generate Sequences using Non-Linear Representations [54.17275171325324]
We present a counterexample to the Linear Representation Hypothesis (LRH)
When trained to repeat an input token sequence, neural networks learn to represent the token at each position with a particular order of magnitude, rather than a direction.
These findings strongly indicate that interpretability research should not be confined to the LRH.
arXiv Detail & Related papers (2024-08-20T15:04:37Z) - Investigating Sparsity in Recurrent Neural Networks [0.0]
This thesis focuses on investigating the effects of pruning and Sparse Recurrent Neural Networks on the performance of RNNs.
We first describe the pruning of RNNs, its impact on the performance of RNNs, and the number of training epochs required to regain accuracy after the pruning is performed.
Next, we continue with the creation and training of Sparse Recurrent Neural Networks and identify the relation between the performance and the graph properties of its underlying arbitrary structure.
arXiv Detail & Related papers (2024-07-30T07:24:58Z) - Topological Representations of Heterogeneous Learning Dynamics of Recurrent Spiking Neural Networks [16.60622265961373]
Spiking Neural Networks (SNNs) have become an essential paradigm in neuroscience and artificial intelligence.
Recent advances in literature have studied the network representations of deep neural networks.
arXiv Detail & Related papers (2024-03-19T05:37:26Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
We study the inner workings of neural networks trained to classify regular-versus-chaotic time series.
We find that the relation between input periodicity and activation periodicity is key for the performance of LKCNN models.
arXiv Detail & Related papers (2023-06-04T08:53:27Z) - Physics-Informed Neural Networks for Time-Domain Simulations: Accuracy,
Computational Cost, and Flexibility [0.0]
Physics-Informed Neural Networks (PINNs) have emerged as a promising solution for drastically accelerating computations of non-linear dynamical systems.
This work investigates the applicability of these methods for power system dynamics, focusing on the dynamic response to load disturbances.
To facilitate a deeper understanding, this paper also present a new regularisation of Neural Network (NN) training by introducing a gradient-based term in the loss function.
arXiv Detail & Related papers (2023-03-15T23:53:32Z) - Learning Trajectories of Hamiltonian Systems with Neural Networks [81.38804205212425]
We propose to enhance Hamiltonian neural networks with an estimation of a continuous-time trajectory of the modeled system.
We demonstrate that the proposed integration scheme works well for HNNs, especially with low sampling rates, noisy and irregular observations.
arXiv Detail & Related papers (2022-04-11T13:25:45Z) - Reverse engineering recurrent neural networks with Jacobian switching
linear dynamical systems [24.0378100479104]
Recurrent neural networks (RNNs) are powerful models for processing time-series data.
The framework of reverse engineering a trained RNN by linearizing around its fixed points has provided insight, but the approach has significant challenges.
We present a new model that overcomes these limitations by co-training an RNN with a novel switching linear dynamical system (SLDS) formulation.
arXiv Detail & Related papers (2021-11-01T20:49:30Z) - Long Short-Term Memory Spiking Networks and Their Applications [10.071615423169902]
We present a novel framework for training recurrent spiking neural networks (SNNs)
We show that LSTM spiking networks learn the timing of the spikes and temporal dependencies.
We also develop a methodology for error backpropagation within LSTM-based SNNs.
arXiv Detail & Related papers (2020-07-09T13:22:27Z) - Modeling from Features: a Mean-field Framework for Over-parameterized
Deep Neural Networks [54.27962244835622]
This paper proposes a new mean-field framework for over- parameterized deep neural networks (DNNs)
In this framework, a DNN is represented by probability measures and functions over its features in the continuous limit.
We illustrate the framework via the standard DNN and the Residual Network (Res-Net) architectures.
arXiv Detail & Related papers (2020-07-03T01:37:16Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
Spiking neural networks (SNNs) have shown advantages over traditional artificial neural networks (ANNs) for low latency and high computational efficiency.
We propose a novel ANN-to-SNN conversion and layer-wise learning framework for rapid and efficient pattern recognition.
arXiv Detail & Related papers (2020-07-02T15:38:44Z) - Recurrent Neural Network Learning of Performance and Intrinsic
Population Dynamics from Sparse Neural Data [77.92736596690297]
We introduce a novel training strategy that allows learning not only the input-output behavior of an RNN but also its internal network dynamics.
We test the proposed method by training an RNN to simultaneously reproduce internal dynamics and output signals of a physiologically-inspired neural model.
Remarkably, we show that the reproduction of the internal dynamics is successful even when the training algorithm relies on the activities of a small subset of neurons.
arXiv Detail & Related papers (2020-05-05T14:16:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.