Revisiting Pre-Trained Models for Chinese Natural Language Processing
- URL: http://arxiv.org/abs/2004.13922v2
- Date: Mon, 2 Nov 2020 06:27:52 GMT
- Title: Revisiting Pre-Trained Models for Chinese Natural Language Processing
- Authors: Yiming Cui, Wanxiang Che, Ting Liu, Bing Qin, Shijin Wang, Guoping Hu
- Abstract summary: We revisit Chinese pre-trained language models to examine their effectiveness in a non-English language.
We also propose a model called MacBERT, which improves upon RoBERTa in several ways.
- Score: 73.65780892128389
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Bidirectional Encoder Representations from Transformers (BERT) has shown
marvelous improvements across various NLP tasks, and consecutive variants have
been proposed to further improve the performance of the pre-trained language
models. In this paper, we target on revisiting Chinese pre-trained language
models to examine their effectiveness in a non-English language and release the
Chinese pre-trained language model series to the community. We also propose a
simple but effective model called MacBERT, which improves upon RoBERTa in
several ways, especially the masking strategy that adopts MLM as correction
(Mac). We carried out extensive experiments on eight Chinese NLP tasks to
revisit the existing pre-trained language models as well as the proposed
MacBERT. Experimental results show that MacBERT could achieve state-of-the-art
performances on many NLP tasks, and we also ablate details with several
findings that may help future research. Resources available:
https://github.com/ymcui/MacBERT
Related papers
- Data-Efficient French Language Modeling with CamemBERTa [0.0]
We introduce CamemBERTa, a French DeBERTa model that builds upon the DeBERTaV3 architecture and training objective.
We evaluate our model's performance on a variety of French downstream tasks and datasets.
arXiv Detail & Related papers (2023-06-02T12:45:34Z) - LERT: A Linguistically-motivated Pre-trained Language Model [67.65651497173998]
We propose LERT, a pre-trained language model that is trained on three types of linguistic features along with the original pre-training task.
We carried out extensive experiments on ten Chinese NLU tasks, and the experimental results show that LERT could bring significant improvements.
arXiv Detail & Related papers (2022-11-10T05:09:16Z) - WeLM: A Well-Read Pre-trained Language Model for Chinese [37.68378062625651]
We present WeLM: a well-read pre-trained language model for Chinese.
We show that WeLM is equipped with broad knowledge on various domains and languages.
arXiv Detail & Related papers (2022-09-21T14:05:30Z) - Probing Structured Pruning on Multilingual Pre-trained Models: Settings,
Algorithms, and Efficiency [62.0887259003594]
This work investigates three aspects of structured pruning on multilingual pre-trained language models: settings, algorithms, and efficiency.
Experiments on nine downstream tasks show several counter-intuitive phenomena.
We present Dynamic Sparsification, a simple approach that allows training the model once and adapting to different model sizes at inference.
arXiv Detail & Related papers (2022-04-06T06:29:52Z) - LICHEE: Improving Language Model Pre-training with Multi-grained
Tokenization [19.89228774074371]
We propose a simple yet effective pre-training method named LICHEE to efficiently incorporate multi-grained information of input text.
Our method can be applied to various pre-trained language models and improve their representation capability.
arXiv Detail & Related papers (2021-08-02T12:08:19Z) - Cross-lingual Transferring of Pre-trained Contextualized Language Models [73.97131976850424]
We propose a novel cross-lingual model transferring framework for PrLMs: TreLM.
To handle the symbol order and sequence length differences between languages, we propose an intermediate TRILayer" structure.
We show the proposed framework significantly outperforms language models trained from scratch with limited data in both performance and efficiency.
arXiv Detail & Related papers (2021-07-27T06:51:13Z) - UNKs Everywhere: Adapting Multilingual Language Models to New Scripts [103.79021395138423]
Massively multilingual language models such as multilingual BERT (mBERT) and XLM-R offer state-of-the-art cross-lingual transfer performance on a range of NLP tasks.
Due to their limited capacity and large differences in pretraining data, there is a profound performance gap between resource-rich and resource-poor target languages.
We propose novel data-efficient methods that enable quick and effective adaptation of pretrained multilingual models to such low-resource languages and unseen scripts.
arXiv Detail & Related papers (2020-12-31T11:37:28Z) - Exploring Fine-tuning Techniques for Pre-trained Cross-lingual Models
via Continual Learning [74.25168207651376]
Fine-tuning pre-trained language models to downstream cross-lingual tasks has shown promising results.
We leverage continual learning to preserve the cross-lingual ability of the pre-trained model when we fine-tune it to downstream tasks.
Our methods achieve better performance than other fine-tuning baselines on the zero-shot cross-lingual part-of-speech tagging and named entity recognition tasks.
arXiv Detail & Related papers (2020-04-29T14:07:18Z) - From English To Foreign Languages: Transferring Pre-trained Language
Models [0.12691047660244334]
Pre-trained models have demonstrated their effectiveness in many downstream natural language processing (NLP) tasks.
The availability of multilingual pre-trained models enables zero-shot transfer of NLP tasks from high resource languages to low resource ones.
We tackle the problem of transferring an existing pre-trained model from English to other languages under a limited computational budget.
arXiv Detail & Related papers (2020-02-18T00:22:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.