Motion Guided 3D Pose Estimation from Videos
- URL: http://arxiv.org/abs/2004.13985v1
- Date: Wed, 29 Apr 2020 06:59:30 GMT
- Title: Motion Guided 3D Pose Estimation from Videos
- Authors: Jingbo Wang, Sijie Yan, Yuanjun Xiong, Dahua Lin
- Abstract summary: We propose a new loss function, called motion loss, for the problem of monocular 3D Human pose estimation from 2D pose.
In computing motion loss, a simple yet effective representation for keypoint motion, called pairwise motion encoding, is introduced.
We design a new graph convolutional network architecture, U-shaped GCN (UGCN), which captures both short-term and long-term motion information.
- Score: 81.14443206968444
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a new loss function, called motion loss, for the problem of
monocular 3D Human pose estimation from 2D pose. In computing motion loss, a
simple yet effective representation for keypoint motion, called pairwise motion
encoding, is introduced. We design a new graph convolutional network
architecture, U-shaped GCN (UGCN). It captures both short-term and long-term
motion information to fully leverage the additional supervision from the motion
loss. We experiment training UGCN with the motion loss on two large scale
benchmarks: Human3.6M and MPI-INF-3DHP. Our model surpasses other
state-of-the-art models by a large margin. It also demonstrates strong capacity
in producing smooth 3D sequences and recovering keypoint motion.
Related papers
- MotionGS: Exploring Explicit Motion Guidance for Deformable 3D Gaussian Splatting [56.785233997533794]
We propose a novel deformable 3D Gaussian splatting framework called MotionGS.
MotionGS explores explicit motion priors to guide the deformation of 3D Gaussians.
Experiments in the monocular dynamic scenes validate that MotionGS surpasses state-of-the-art methods.
arXiv Detail & Related papers (2024-10-10T08:19:47Z) - Shape of Motion: 4D Reconstruction from a Single Video [51.04575075620677]
We introduce a method capable of reconstructing generic dynamic scenes, featuring explicit, full-sequence-long 3D motion.
We exploit the low-dimensional structure of 3D motion by representing scene motion with a compact set of SE3 motion bases.
Our method achieves state-of-the-art performance for both long-range 3D/2D motion estimation and novel view synthesis on dynamic scenes.
arXiv Detail & Related papers (2024-07-18T17:59:08Z) - Learning Human Motion from Monocular Videos via Cross-Modal Manifold Alignment [45.74813582690906]
Learning 3D human motion from 2D inputs is a fundamental task in the realms of computer vision and computer graphics.
We present the Video-to-Motion Generator (VTM), which leverages motion priors through cross-modal latent feature space alignment.
The VTM showcases state-of-the-art performance in reconstructing 3D human motion from monocular videos.
arXiv Detail & Related papers (2024-04-15T06:38:09Z) - Motion-aware 3D Gaussian Splatting for Efficient Dynamic Scene Reconstruction [89.53963284958037]
We propose a novel motion-aware enhancement framework for dynamic scene reconstruction.
Specifically, we first establish a correspondence between 3D Gaussian movements and pixel-level flow.
For the prevalent deformation-based paradigm that presents a harder optimization problem, a transient-aware deformation auxiliary module is proposed.
arXiv Detail & Related papers (2024-03-18T03:46:26Z) - MotionBERT: A Unified Perspective on Learning Human Motion
Representations [46.67364057245364]
We present a unified perspective on tackling various human-centric video tasks by learning human motion representations from large-scale and heterogeneous data resources.
We propose a pretraining stage in which a motion encoder is trained to recover the underlying 3D motion from noisy partial 2D observations.
We implement motion encoder with a Dual-stream Spatio-temporal Transformer (DSTformer) neural network.
arXiv Detail & Related papers (2022-10-12T19:46:25Z) - MoCaNet: Motion Retargeting in-the-wild via Canonicalization Networks [77.56526918859345]
We present a novel framework that brings the 3D motion task from controlled environments to in-the-wild scenarios.
It is capable of body motion from a character in a 2D monocular video to a 3D character without using any motion capture system or 3D reconstruction procedure.
arXiv Detail & Related papers (2021-12-19T07:52:05Z) - Neural Monocular 3D Human Motion Capture with Physical Awareness [76.55971509794598]
We present a new trainable system for physically plausible markerless 3D human motion capture.
Unlike most neural methods for human motion capture, our approach is aware of physical and environmental constraints.
It produces smooth and physically principled 3D motions in an interactive frame rate in a wide variety of challenging scenes.
arXiv Detail & Related papers (2021-05-03T17:57:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.