Deepfake Video Forensics based on Transfer Learning
- URL: http://arxiv.org/abs/2004.14178v1
- Date: Wed, 29 Apr 2020 13:21:28 GMT
- Title: Deepfake Video Forensics based on Transfer Learning
- Authors: Rahul U, Ragul M, Raja Vignesh K, Tejeswinee K
- Abstract summary: "Deepfake" can create fake images and videos that humans cannot differentiate from the genuine ones.
This paper details retraining the image classification models to apprehend the features from each deepfake video frames.
When checking Deepfake videos, this technique received more than 87 per cent accuracy.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deeplearning has been used to solve complex problems in various domains. As
it advances, it also creates applications which become a major threat to our
privacy, security and even to our Democracy. Such an application which is being
developed recently is the "Deepfake". Deepfake models can create fake images
and videos that humans cannot differentiate them from the genuine ones.
Therefore, the counter application to automatically detect and analyze the
digital visual media is necessary in today world. This paper details retraining
the image classification models to apprehend the features from each deepfake
video frames. After feeding different sets of deepfake clips of video fringes
through a pretrained layer of bottleneck in the neural network is made for
every video frame, already stated layer contains condense data for all images
and exposes artificial manipulations in Deepfake videos. When checking Deepfake
videos, this technique received more than 87 per cent accuracy. This technique
has been tested on the Face Forensics dataset and obtained good accuracy in
detection.
Related papers
- Deepfake detection in videos with multiple faces using geometric-fakeness features [79.16635054977068]
Deepfakes of victims or public figures can be used by fraudsters for blackmailing, extorsion and financial fraud.
In our research we propose to use geometric-fakeness features (GFF) that characterize a dynamic degree of a face presence in a video.
We employ our approach to analyze videos with multiple faces that are simultaneously present in a video.
arXiv Detail & Related papers (2024-10-10T13:10:34Z) - What Matters in Detecting AI-Generated Videos like Sora? [51.05034165599385]
Gap between synthetic and real-world videos remains under-explored.
In this study, we compare real-world videos with those generated by a state-of-the-art AI model, Stable Video Diffusion.
Our model is capable of detecting videos generated by Sora with high accuracy, even without exposure to any Sora videos during training.
arXiv Detail & Related papers (2024-06-27T23:03:58Z) - Comparative Analysis of Deep-Fake Algorithms [0.0]
Deepfakes, also known as deep learning-based fake videos, have become a major concern in recent years.
These deepfake videos can be used for malicious purposes such as spreading misinformation, impersonating individuals, and creating fake news.
Deepfake detection technologies use various approaches such as facial recognition, motion analysis, and audio-visual synchronization.
arXiv Detail & Related papers (2023-09-06T18:17:47Z) - DeePhy: On Deepfake Phylogeny [58.01631614114075]
DeePhy is a novel Deepfake Phylogeny dataset which consists of 5040 deepfake videos generated using three different generation techniques.
We present the benchmark on DeePhy dataset using six deepfake detection algorithms.
arXiv Detail & Related papers (2022-09-19T15:30:33Z) - Deep Convolutional Pooling Transformer for Deepfake Detection [54.10864860009834]
We propose a deep convolutional Transformer to incorporate decisive image features both locally and globally.
Specifically, we apply convolutional pooling and re-attention to enrich the extracted features and enhance efficacy.
The proposed solution consistently outperforms several state-of-the-art baselines on both within- and cross-dataset experiments.
arXiv Detail & Related papers (2022-09-12T15:05:41Z) - Practical Deepfake Detection: Vulnerabilities in Global Contexts [1.6114012813668934]
Deep learning has enabled digital alterations to videos, known as deepfakes.
This technology raises important societal concerns regarding disinformation and authenticity.
We simulate data corruption techniques and examine the performance of a state-of-the-art deepfake detection algorithm on corrupted variants of the FaceForensics++ dataset.
arXiv Detail & Related papers (2022-06-20T15:24:55Z) - Adversarially robust deepfake media detection using fused convolutional
neural network predictions [79.00202519223662]
Current deepfake detection systems struggle against unseen data.
We employ three different deep Convolutional Neural Network (CNN) models to classify fake and real images extracted from videos.
The proposed technique outperforms state-of-the-art models with 96.5% accuracy.
arXiv Detail & Related papers (2021-02-11T11:28:00Z) - Detecting Deepfake Videos Using Euler Video Magnification [1.8506048493564673]
Deepfake videos are manipulating videos using advanced machine learning techniques.
In this paper, we examine a technique for possible identification of deepfake videos.
Our approach uses features extracted from the Euler technique to train three models to classify counterfeit and unaltered videos.
arXiv Detail & Related papers (2021-01-27T17:37:23Z) - WildDeepfake: A Challenging Real-World Dataset for Deepfake Detection [82.42495493102805]
We introduce a new dataset WildDeepfake which consists of 7,314 face sequences extracted from 707 deepfake videos collected completely from the internet.
We conduct a systematic evaluation of a set of baseline detection networks on both existing and our WildDeepfake datasets, and show that WildDeepfake is indeed a more challenging dataset, where the detection performance can decrease drastically.
arXiv Detail & Related papers (2021-01-05T11:10:32Z) - A Convolutional LSTM based Residual Network for Deepfake Video Detection [23.275080108063406]
We develop a Convolutional LSTM based Residual Network (CLRNet) to detect deepfake videos.
We also propose a transfer learning-based approach to generalize different deepfake methods.
arXiv Detail & Related papers (2020-09-16T05:57:06Z) - Adversarial Deepfakes: Evaluating Vulnerability of Deepfake Detectors to
Adversarial Examples [23.695497512694068]
Recent advances in video manipulation techniques have made the generation of fake videos more accessible than ever before.
Manipulated videos can fuel disinformation and reduce trust in media.
Recent developed Deepfake detection methods rely on deep neural networks (DNNs) to distinguish AI-generated fake videos from real videos.
arXiv Detail & Related papers (2020-02-09T07:10:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.