A Robust Hierarchical Graph Convolutional Network Model for
Collaborative Filtering
- URL: http://arxiv.org/abs/2004.14734v1
- Date: Thu, 30 Apr 2020 12:50:39 GMT
- Title: A Robust Hierarchical Graph Convolutional Network Model for
Collaborative Filtering
- Authors: Shaowen Peng, Tsunenori Mine
- Abstract summary: Graph Convolutional Network (GCN) has achieved great success and has been applied in various fields including recommender systems.
GCN still suffers from many issues such as training difficulties, over-smoothing, vulnerable to adversarial attacks, etc.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph Convolutional Network (GCN) has achieved great success and has been
applied in various fields including recommender systems. However, GCN still
suffers from many issues such as training difficulties, over-smoothing,
vulnerable to adversarial attacks, etc. Distinct from current GCN-based methods
which simply employ GCN for recommendation, in this paper we are committed to
build a robust GCN model for collaborative filtering. Firstly, we argue that
recursively incorporating messages from different order neighborhood mixes
distinct node messages indistinguishably, which increases the training
difficulty; instead we choose to separately aggregate different order neighbor
messages with a simple GCN model which has been shown effective; then we
accumulate them together in a hierarchical way without introducing additional
model parameters. Secondly, we propose a solution to alleviate over-smoothing
by randomly dropping out neighbor messages at each layer, which also well
prevents over-fitting and enhances the robustness. Extensive experiments on
three real-world datasets demonstrate the effectiveness and robustness of our
model.
Related papers
- Flattened Graph Convolutional Networks For Recommendation [18.198536511983452]
This paper proposes the flattened GCN(FlatGCN) model, which is able to achieve superior performance with remarkably less complexity compared with existing models.
First, we propose a simplified but powerful GCN architecture which aggregates the neighborhood information using one flattened GCN layer.
Second, we propose an informative neighbor-infomax sampling method to select the most valuable neighbors by measuring the correlation among neighboring nodes.
Third, we propose a layer ensemble technique which improves the expressiveness of the learned representations by assembling the layer-wise neighborhood representations at the final layer.
arXiv Detail & Related papers (2022-09-25T12:53:50Z) - Analyzing the Effect of Sampling in GNNs on Individual Fairness [79.28449844690566]
Graph neural network (GNN) based methods have saturated the field of recommender systems.
We extend an existing method for promoting individual fairness on graphs to support mini-batch, or sub-sample based, training of a GNN.
We show that mini-batch training facilitate individual fairness promotion by allowing for local nuance to guide the process of fairness promotion in representation learning.
arXiv Detail & Related papers (2022-09-08T16:20:25Z) - Comprehensive Graph Gradual Pruning for Sparse Training in Graph Neural
Networks [52.566735716983956]
We propose a graph gradual pruning framework termed CGP to dynamically prune GNNs.
Unlike LTH-based methods, the proposed CGP approach requires no re-training, which significantly reduces the computation costs.
Our proposed strategy greatly improves both training and inference efficiency while matching or even exceeding the accuracy of existing methods.
arXiv Detail & Related papers (2022-07-18T14:23:31Z) - Automated Graph Learning via Population Based Self-Tuning GCN [45.28411311903644]
Graph convolutional network (GCN) and its variants have been successfully applied to a broad range of tasks.
Traditional GCN models suffer from the issues of overfitting and oversmoothing.
Recent techniques like DropEdge could alleviate these issues and thus enable the development of deep GCN.
arXiv Detail & Related papers (2021-07-09T23:05:21Z) - RGCF: Refined Graph Convolution Collaborative Filtering with concise and
expressive embedding [42.46797662323393]
We develop a new GCN-based Collaborative Filtering model, named Refined Graph convolution Collaborative Filtering(RGCF)
RGCF is more capable for capturing the implicit high-order connectivities inside the graph and the resultant vector representations are more expressive.
We conduct extensive experiments on three public million-size datasets, demonstrating that our RGCF significantly outperforms state-of-the-art models.
arXiv Detail & Related papers (2020-07-07T12:26:10Z) - Simple and Deep Graph Convolutional Networks [63.76221532439285]
Graph convolutional networks (GCNs) are a powerful deep learning approach for graph-structured data.
Despite their success, most of the current GCN models are shallow, due to the em over-smoothing problem.
We propose the GCNII, an extension of the vanilla GCN model with two simple yet effective techniques.
arXiv Detail & Related papers (2020-07-04T16:18:06Z) - Policy-GNN: Aggregation Optimization for Graph Neural Networks [60.50932472042379]
Graph neural networks (GNNs) aim to model the local graph structures and capture the hierarchical patterns by aggregating the information from neighbors.
It is a challenging task to develop an effective aggregation strategy for each node, given complex graphs and sparse features.
We propose Policy-GNN, a meta-policy framework that models the sampling procedure and message passing of GNNs into a combined learning process.
arXiv Detail & Related papers (2020-06-26T17:03:06Z) - Single-Layer Graph Convolutional Networks For Recommendation [17.3621098912528]
Graph Convolutional Networks (GCNs) have received significant attention and achieved start-of-the-art performances on recommendation tasks.
Existing GCN models tend to perform recursion aggregations among all related nodes, which arises severe computational burden.
We propose a single GCN layer to aggregate information from the neighbors filtered by DA similarity and then generates the node representations.
arXiv Detail & Related papers (2020-06-07T14:38:47Z) - LightGCN: Simplifying and Powering Graph Convolution Network for
Recommendation [100.76229017056181]
Graph Convolution Network (GCN) has become new state-of-the-art for collaborative filtering.
In this work, we aim to simplify the design of GCN to make it more concise and appropriate for recommendation.
We propose a new model named LightGCN, including only the most essential component in GCN -- neighborhood aggregation.
arXiv Detail & Related papers (2020-02-06T06:53:42Z) - Revisiting Graph based Collaborative Filtering: A Linear Residual Graph
Convolutional Network Approach [55.44107800525776]
Graph Convolutional Networks (GCNs) are state-of-the-art graph based representation learning models.
In this paper, we revisit GCN based Collaborative Filtering (CF) based Recommender Systems (RS)
We show that removing non-linearities would enhance recommendation performance, consistent with the theories in simple graph convolutional networks.
We propose a residual network structure that is specifically designed for CF with user-item interaction modeling.
arXiv Detail & Related papers (2020-01-28T04:41:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.