Bridging Linguistic Typology and Multilingual Machine Translation with
Multi-View Language Representations
- URL: http://arxiv.org/abs/2004.14923v2
- Date: Sun, 25 Oct 2020 20:51:46 GMT
- Title: Bridging Linguistic Typology and Multilingual Machine Translation with
Multi-View Language Representations
- Authors: Arturo Oncevay, Barry Haddow, Alexandra Birch
- Abstract summary: We use singular vector canonical correlation analysis to study what kind of information is induced from each source.
We observe that our representations embed typology and strengthen correlations with language relationships.
We then take advantage of our multi-view language vector space for multilingual machine translation, where we achieve competitive overall translation accuracy.
- Score: 83.27475281544868
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Sparse language vectors from linguistic typology databases and learned
embeddings from tasks like multilingual machine translation have been
investigated in isolation, without analysing how they could benefit from each
other's language characterisation. We propose to fuse both views using singular
vector canonical correlation analysis and study what kind of information is
induced from each source. By inferring typological features and language
phylogenies, we observe that our representations embed typology and strengthen
correlations with language relationships. We then take advantage of our
multi-view language vector space for multilingual machine translation, where we
achieve competitive overall translation accuracy in tasks that require
information about language similarities, such as language clustering and
ranking candidates for multilingual transfer. With our method, which is also
released as a tool, we can easily project and assess new languages without
expensive retraining of massive multilingual or ranking models, which are major
disadvantages of related approaches.
Related papers
- Improving Multilingual Neural Machine Translation by Utilizing Semantic and Linguistic Features [18.76505158652759]
We propose to exploit both semantic and linguistic features between multiple languages to enhance multilingual translation.
On the encoder side, we introduce a disentangling learning task that aligns encoder representations by disentangling semantic and linguistic features.
On the decoder side, we leverage a linguistic encoder to integrate low-level linguistic features to assist in the target language generation.
arXiv Detail & Related papers (2024-08-02T17:10:12Z) - Understanding Cross-Lingual Alignment -- A Survey [52.572071017877704]
Cross-lingual alignment is the meaningful similarity of representations across languages in multilingual language models.
We survey the literature of techniques to improve cross-lingual alignment, providing a taxonomy of methods and summarising insights from throughout the field.
arXiv Detail & Related papers (2024-04-09T11:39:53Z) - Towards a Deep Understanding of Multilingual End-to-End Speech
Translation [52.26739715012842]
We analyze representations learnt in a multilingual end-to-end speech translation model trained over 22 languages.
We derive three major findings from our analysis.
arXiv Detail & Related papers (2023-10-31T13:50:55Z) - GradSim: Gradient-Based Language Grouping for Effective Multilingual
Training [13.730907708289331]
We propose GradSim, a language grouping method based on gradient similarity.
Our experiments on three diverse multilingual benchmark datasets show that it leads to the largest performance gains.
Besides linguistic features, the topics of the datasets play an important role for language grouping.
arXiv Detail & Related papers (2023-10-23T18:13:37Z) - Informative Language Representation Learning for Massively Multilingual
Neural Machine Translation [47.19129812325682]
In a multilingual neural machine translation model, an artificial language token is usually used to guide translation into the desired target language.
Recent studies show that prepending language tokens sometimes fails to navigate the multilingual neural machine translation models into right translation directions.
We propose two methods, language embedding embodiment and language-aware multi-head attention, to learn informative language representations to channel translation into right directions.
arXiv Detail & Related papers (2022-09-04T04:27:17Z) - The Geometry of Multilingual Language Model Representations [25.880639246639323]
We assess how multilingual language models maintain a shared multilingual representation space while still encoding language-sensitive information in each language.
The subspace means differ along language-sensitive axes that are relatively stable throughout middle layers, and these axes encode information such as token vocabularies.
We visualize representations projected onto language-sensitive and language-neutral axes, identifying language family and part-of-speech clusters, along with spirals, toruses, and curves representing token position information.
arXiv Detail & Related papers (2022-05-22T23:58:24Z) - Discovering Representation Sprachbund For Multilingual Pre-Training [139.05668687865688]
We generate language representation from multilingual pre-trained models and conduct linguistic analysis.
We cluster all the target languages into multiple groups and name each group as a representation sprachbund.
Experiments are conducted on cross-lingual benchmarks and significant improvements are achieved compared to strong baselines.
arXiv Detail & Related papers (2021-09-01T09:32:06Z) - Gender Bias in Multilingual Embeddings and Cross-Lingual Transfer [101.58431011820755]
We study gender bias in multilingual embeddings and how it affects transfer learning for NLP applications.
We create a multilingual dataset for bias analysis and propose several ways for quantifying bias in multilingual representations.
arXiv Detail & Related papers (2020-05-02T04:34:37Z) - Linguistic Typology Features from Text: Inferring the Sparse Features of
World Atlas of Language Structures [73.06435180872293]
We construct a recurrent neural network predictor based on byte embeddings and convolutional layers.
We show that some features from various linguistic types can be predicted reliably.
arXiv Detail & Related papers (2020-04-30T21:00:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.