SimPropNet: Improved Similarity Propagation for Few-shot Image
Segmentation
- URL: http://arxiv.org/abs/2004.15014v2
- Date: Sat, 2 May 2020 08:00:15 GMT
- Title: SimPropNet: Improved Similarity Propagation for Few-shot Image
Segmentation
- Authors: Siddhartha Gairola, Mayur Hemani, Ayush Chopra and Balaji
Krishnamurthy
- Abstract summary: Recent deep neural network based FSS methods leverage high-dimensional feature similarity between the foreground features of the support images and the query image features.
We propose to jointly predict the support and query masks to force the support features to share characteristics with the query features.
Our method achieves state-of-the-art results for one-shot and five-shot segmentation on the PASCAL-5i dataset.
- Score: 14.419517737536706
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Few-shot segmentation (FSS) methods perform image segmentation for a
particular object class in a target (query) image, using a small set of
(support) image-mask pairs. Recent deep neural network based FSS methods
leverage high-dimensional feature similarity between the foreground features of
the support images and the query image features. In this work, we demonstrate
gaps in the utilization of this similarity information in existing methods, and
present a framework - SimPropNet, to bridge those gaps. We propose to jointly
predict the support and query masks to force the support features to share
characteristics with the query features. We also propose to utilize
similarities in the background regions of the query and support images using a
novel foreground-background attentive fusion mechanism. Our method achieves
state-of-the-art results for one-shot and five-shot segmentation on the
PASCAL-5i dataset. The paper includes detailed analysis and ablation studies
for the proposed improvements and quantitative comparisons with contemporary
methods.
Related papers
- Enhancing Few-Shot Image Classification through Learnable Multi-Scale Embedding and Attention Mechanisms [1.1557852082644071]
In the context of few-shot classification, the goal is to train a classifier using a limited number of samples.
Traditional metric-based methods exhibit certain limitations in achieving this objective.
Our approach involves utilizing multi-output embedding network that maps samples into distinct feature spaces.
arXiv Detail & Related papers (2024-09-12T12:34:29Z) - Boosting Few-Shot Segmentation via Instance-Aware Data Augmentation and
Local Consensus Guided Cross Attention [7.939095881813804]
Few-shot segmentation aims to train a segmentation model that can fast adapt to a novel task for which only a few annotated images are provided.
We introduce an instance-aware data augmentation (IDA) strategy that augments the support images based on the relative sizes of the target objects.
The proposed IDA effectively increases the support set's diversity and promotes the distribution consistency between support and query images.
arXiv Detail & Related papers (2024-01-18T10:29:10Z) - Dense Affinity Matching for Few-Shot Segmentation [83.65203917246745]
Few-Shot (FSS) aims to segment the novel class images with a few samples.
We propose a dense affinity matching framework to exploit the support-query interaction.
We show that our framework performs very competitively under different settings with only 0.68M parameters.
arXiv Detail & Related papers (2023-07-17T12:27:15Z) - Few-shot Medical Image Segmentation via Cross-Reference Transformer [3.2634122554914]
Few-shot segmentation(FSS) has the potential to address these challenges by learning new categories from a small number of labeled samples.
We propose a novel self-supervised few shot medical image segmentation network with Cross-Reference Transformer.
Experimental results show that the proposed model achieves good results on both CT dataset and MRI dataset.
arXiv Detail & Related papers (2023-04-19T13:05:18Z) - Few-shot Segmentation with Optimal Transport Matching and Message Flow [50.9853556696858]
It is essential for few-shot semantic segmentation to fully utilize the support information.
We propose a Correspondence Matching Network (CMNet) with an Optimal Transport Matching module.
Experiments on PASCAL VOC 2012, MS COCO, and FSS-1000 datasets show that our network achieves new state-of-the-art few-shot segmentation performance.
arXiv Detail & Related papers (2021-08-19T06:26:11Z) - Few-Shot Segmentation via Cycle-Consistent Transformer [74.49307213431952]
We focus on utilizing pixel-wise relationships between support and target images to facilitate the few-shot semantic segmentation task.
We propose using a novel cycle-consistent attention mechanism to filter out possible harmful support features.
Our proposed CyCTR leads to remarkable improvement compared to previous state-of-the-art methods.
arXiv Detail & Related papers (2021-06-04T07:57:48Z) - SCNet: Enhancing Few-Shot Semantic Segmentation by Self-Contrastive
Background Prototypes [56.387647750094466]
Few-shot semantic segmentation aims to segment novel-class objects in a query image with only a few annotated examples.
Most of advanced solutions exploit a metric learning framework that performs segmentation through matching each pixel to a learned foreground prototype.
This framework suffers from biased classification due to incomplete construction of sample pairs with the foreground prototype only.
arXiv Detail & Related papers (2021-04-19T11:21:47Z) - Prototype Mixture Models for Few-shot Semantic Segmentation [50.866870384596446]
Few-shot segmentation is challenging because objects within the support and query images could significantly differ in appearance and pose.
We propose prototype mixture models (PMMs), which correlate diverse image regions with multiple prototypes to enforce the prototype-based semantic representation.
PMMs improve 5-shot segmentation performance on MS-COCO by up to 5.82% with only a moderate cost for model size and inference speed.
arXiv Detail & Related papers (2020-08-10T04:33:17Z) - CRNet: Cross-Reference Networks for Few-Shot Segmentation [59.85183776573642]
Few-shot segmentation aims to learn a segmentation model that can be generalized to novel classes with only a few training images.
With a cross-reference mechanism, our network can better find the co-occurrent objects in the two images.
Experiments on the PASCAL VOC 2012 dataset show that our network achieves state-of-the-art performance.
arXiv Detail & Related papers (2020-03-24T04:55:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.