Can Multilingual Language Models Transfer to an Unseen Dialect? A Case
Study on North African Arabizi
- URL: http://arxiv.org/abs/2005.00318v1
- Date: Fri, 1 May 2020 11:29:23 GMT
- Title: Can Multilingual Language Models Transfer to an Unseen Dialect? A Case
Study on North African Arabizi
- Authors: Benjamin Muller and Benoit Sagot and Djam\'e Seddah
- Abstract summary: We study the ability of multilingual language models to process an unseen dialect.
We take user generated North-African Arabic as our case study.
We show in zero-shot and unsupervised adaptation scenarios that multilingual language models are able to transfer to such an unseen dialect.
- Score: 2.76240219662896
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Building natural language processing systems for non standardized and low
resource languages is a difficult challenge. The recent success of large-scale
multilingual pretrained language models provides new modeling tools to tackle
this. In this work, we study the ability of multilingual language models to
process an unseen dialect. We take user generated North-African Arabic as our
case study, a resource-poor dialectal variety of Arabic with frequent
code-mixing with French and written in Arabizi, a non-standardized
transliteration of Arabic to Latin script. Focusing on two tasks,
part-of-speech tagging and dependency parsing, we show in zero-shot and
unsupervised adaptation scenarios that multilingual language models are able to
transfer to such an unseen dialect, specifically in two extreme cases: (i)
across scripts, using Modern Standard Arabic as a source language, and (ii)
from a distantly related language, unseen during pretraining, namely Maltese.
Our results constitute the first successful transfer experiments on this
dialect, paving thus the way for the development of an NLP ecosystem for
resource-scarce, non-standardized and highly variable vernacular languages.
Related papers
- Breaking the Script Barrier in Multilingual Pre-Trained Language Models with Transliteration-Based Post-Training Alignment [50.27950279695363]
The transfer performance is often hindered when a low-resource target language is written in a different script than the high-resource source language.
Inspired by recent work that uses transliteration to address this problem, our paper proposes a transliteration-based post-pretraining alignment (PPA) method.
arXiv Detail & Related papers (2024-06-28T08:59:24Z) - The Less the Merrier? Investigating Language Representation in
Multilingual Models [8.632506864465501]
We investigate the linguistic representation of different languages in multilingual models.
We observe from our experiments that community-centered models perform better at distinguishing between languages in the same family for low-resource languages.
arXiv Detail & Related papers (2023-10-20T02:26:34Z) - Soft Language Clustering for Multilingual Model Pre-training [57.18058739931463]
We propose XLM-P, which contextually retrieves prompts as flexible guidance for encoding instances conditionally.
Our XLM-P enables (1) lightweight modeling of language-invariant and language-specific knowledge across languages, and (2) easy integration with other multilingual pre-training methods.
arXiv Detail & Related papers (2023-06-13T08:08:08Z) - Parameter and Data Efficient Continual Pre-training for Robustness to
Dialectal Variance in Arabic [9.004920233490642]
We show that multilingual-BERT (mBERT) incrementally pretrained on Arabic monolingual data takes less training time and yields comparable accuracy when compared to our custom monolingual Arabic model.
We then explore two continual pre-training methods-- (1) using small amounts of dialectical data for continual finetuning and (2) parallel Arabic to English data and a Translation Language Modeling loss function.
arXiv Detail & Related papers (2022-11-08T02:51:57Z) - Generalizing Multimodal Pre-training into Multilingual via Language
Acquisition [54.69707237195554]
English-based Vision-Language Pre-training has achieved great success in various downstream tasks.
Some efforts have been taken to generalize this success to non-English languages through Multilingual Vision-Language Pre-training.
We propose a textbfMultitextbfLingual textbfAcquisition (MLA) framework that can easily generalize a monolingual Vision-Language Pre-training model into multilingual.
arXiv Detail & Related papers (2022-05-29T08:53:22Z) - Multilingual Language Model Adaptive Fine-Tuning: A Study on African
Languages [19.067718464786463]
We perform multilingual adaptive fine-tuning (MAFT) on 17 most-resourced African languages and three other high-resource languages widely spoken on the African continent.
To further specialize the multilingual PLM, we removed vocabulary tokens from the embedding layer that corresponds to non-African writing scripts before MAFT.
Our approach is competitive to applying LAFT on individual languages while requiring significantly less disk space.
arXiv Detail & Related papers (2022-04-13T16:13:49Z) - Can Character-based Language Models Improve Downstream Task Performance
in Low-Resource and Noisy Language Scenarios? [0.0]
We focus on North-African colloquial dialectal Arabic written using an extension of the Latin script, called NArabizi.
We show that a character-based model trained on only 99k sentences of NArabizi and fined-tuned on a small treebank leads to performance close to those obtained with the same architecture pre-trained on large multilingual and monolingual models.
arXiv Detail & Related papers (2021-10-26T14:59:16Z) - Discovering Representation Sprachbund For Multilingual Pre-Training [139.05668687865688]
We generate language representation from multilingual pre-trained models and conduct linguistic analysis.
We cluster all the target languages into multiple groups and name each group as a representation sprachbund.
Experiments are conducted on cross-lingual benchmarks and significant improvements are achieved compared to strong baselines.
arXiv Detail & Related papers (2021-09-01T09:32:06Z) - Cross-lingual Machine Reading Comprehension with Language Branch
Knowledge Distillation [105.41167108465085]
Cross-lingual Machine Reading (CLMRC) remains a challenging problem due to the lack of large-scale datasets in low-source languages.
We propose a novel augmentation approach named Language Branch Machine Reading (LBMRC)
LBMRC trains multiple machine reading comprehension (MRC) models proficient in individual language.
We devise a multilingual distillation approach to amalgamate knowledge from multiple language branch models to a single model for all target languages.
arXiv Detail & Related papers (2020-10-27T13:12:17Z) - When Being Unseen from mBERT is just the Beginning: Handling New
Languages With Multilingual Language Models [2.457872341625575]
Transfer learning based on pretraining language models on a large amount of raw data has become a new norm to reach state-of-the-art performance in NLP.
We show that such models behave in multiple ways on unseen languages.
arXiv Detail & Related papers (2020-10-24T10:15:03Z) - XCOPA: A Multilingual Dataset for Causal Commonsense Reasoning [68.57658225995966]
Cross-lingual Choice of Plausible Alternatives (XCOPA) is a typologically diverse multilingual dataset for causal commonsense reasoning in 11 languages.
We evaluate a range of state-of-the-art models on this novel dataset, revealing that the performance of current methods falls short compared to translation-based transfer.
arXiv Detail & Related papers (2020-05-01T12:22:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.