PowerPlanningDL: Reliability-Aware Framework for On-Chip Power Grid
Design using Deep Learning
- URL: http://arxiv.org/abs/2005.01386v2
- Date: Fri, 24 Jul 2020 06:12:18 GMT
- Title: PowerPlanningDL: Reliability-Aware Framework for On-Chip Power Grid
Design using Deep Learning
- Authors: Sukanta Dey, Sukumar Nandi, and Gaurav Trivedi
- Abstract summary: This paper introduces Deep learning (DL)-based framework to approximately predict the initial design of the power grid network.
The proposed framework reduces many iterative design steps and speeds up the total design cycle.
The results show that the predicted power grid design is closer to the original design with minimal prediction error.
- Score: 3.8398578030920425
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the increase in the complexity of chip designs, VLSI physical design has
become a time-consuming task, which is an iterative design process. Power
planning is that part of the floorplanning in VLSI physical design where power
grid networks are designed in order to provide adequate power to all the
underlying functional blocks. Power planning also requires multiple iterative
steps to create the power grid network while satisfying the allowed worst-case
IR drop and Electromigration (EM) margin. For the first time, this paper
introduces Deep learning (DL)-based framework to approximately predict the
initial design of the power grid network, considering different reliability
constraints. The proposed framework reduces many iterative design steps and
speeds up the total design cycle. Neural Network-based multi-target regression
technique is used to create the DL model. Feature extraction is done, and the
training dataset is generated from the floorplans of some of the power grid
designs extracted from the IBM processor. The DL model is trained using the
generated dataset. The proposed DL-based framework is validated using a new set
of power grid specifications (obtained by perturbing the designs used in the
training phase). The results show that the predicted power grid design is
closer to the original design with minimal prediction error (~2%). The proposed
DL-based approach also improves the design cycle time with a speedup of ~6X for
standard power grid benchmarks.
Related papers
- Auto-Train-Once: Controller Network Guided Automatic Network Pruning from Scratch [72.26822499434446]
Auto-Train-Once (ATO) is an innovative network pruning algorithm designed to automatically reduce the computational and storage costs of DNNs.
We provide a comprehensive convergence analysis as well as extensive experiments, and the results show that our approach achieves state-of-the-art performance across various model architectures.
arXiv Detail & Related papers (2024-03-21T02:33:37Z) - Reconfigurable Distributed FPGA Cluster Design for Deep Learning
Accelerators [59.11160990637615]
We propose a distributed system based on lowpower embedded FPGAs designed for edge computing applications.
The proposed system can simultaneously execute diverse Neural Network (NN) models, arrange the graph in a pipeline structure, and manually allocate greater resources to the most computationally intensive layers of the NN graph.
arXiv Detail & Related papers (2023-05-24T16:08:55Z) - Iterative Soft Shrinkage Learning for Efficient Image Super-Resolution [91.3781512926942]
Image super-resolution (SR) has witnessed extensive neural network designs from CNN to transformer architectures.
This work investigates the potential of network pruning for super-resolution iteration to take advantage of off-the-shelf network designs and reduce the underlying computational overhead.
We propose a novel Iterative Soft Shrinkage-Percentage (ISS-P) method by optimizing the sparse structure of a randomly network at each and tweaking unimportant weights with a small amount proportional to the magnitude scale on-the-fly.
arXiv Detail & Related papers (2023-03-16T21:06:13Z) - Intelligent Circuit Design and Implementation with Machine Learning [0.0]
I present multiple fast yet accurate machine learning models covering a wide range of chip design stages.
I present APOLLO, a fully automated power modeling framework.
I also present RouteNet for early routability prediction.
arXiv Detail & Related papers (2022-06-07T06:17:52Z) - An Intelligent End-to-End Neural Architecture Search Framework for Electricity Forecasting Model Development [4.940941112226529]
We propose an intelligent automated architecture search (IAAS) framework for the development of time-series electricity forecasting models.
The proposed framework contains three primary components, i.e., network function-preserving transformation operation, reinforcement learning (RL)-based network transformation control, and network screening.
We demonstrate that the proposed IAAS framework significantly outperforms the ten existing models or methods in terms of forecasting accuracy and stability.
arXiv Detail & Related papers (2022-03-25T10:36:27Z) - OpeNPDN: A Neural-network-based Framework for Power Delivery Network
Synthesis [3.7338875223247436]
Power delivery network (PDN) design is a non-trivial, time-intensive, and iterative task.
This work proposes a machine learning-based methodology that employs a set of predefined PDN templates.
arXiv Detail & Related papers (2021-10-27T05:33:33Z) - Dynamic Slimmable Network [105.74546828182834]
We develop a dynamic network slimming regime named Dynamic Slimmable Network (DS-Net)
Our DS-Net is empowered with the ability of dynamic inference by the proposed double-headed dynamic gate.
It consistently outperforms its static counterparts as well as state-of-the-art static and dynamic model compression methods.
arXiv Detail & Related papers (2021-03-24T15:25:20Z) - Scalable Deep-Learning-Accelerated Topology Optimization for Additively
Manufactured Materials [4.221095652322005]
Topology optimization (TO) is a popular and powerful computational approach for designing novel structures, materials, and devices.
To address these issues, we propose a general scalable deep-learning (DL) based TO framework, referred to as SDL-TO.
Our framework accelerates TO by learning the iterative history data and simultaneously training on the mapping between the given design and its gradient.
arXiv Detail & Related papers (2020-11-28T17:38:31Z) - Training End-to-End Analog Neural Networks with Equilibrium Propagation [64.0476282000118]
We introduce a principled method to train end-to-end analog neural networks by gradient descent.
We show mathematically that a class of analog neural networks (called nonlinear resistive networks) are energy-based models.
Our work can guide the development of a new generation of ultra-fast, compact and low-power neural networks supporting on-chip learning.
arXiv Detail & Related papers (2020-06-02T23:38:35Z) - Network Adjustment: Channel Search Guided by FLOPs Utilization Ratio [101.84651388520584]
This paper presents a new framework named network adjustment, which considers network accuracy as a function of FLOPs.
Experiments on standard image classification datasets and a wide range of base networks demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2020-04-06T15:51:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.