Study of electronic properties, Magnetization and persistent currents in
a mesoscopic ring by controlled curvature
- URL: http://arxiv.org/abs/2005.02170v1
- Date: Sun, 3 May 2020 00:10:41 GMT
- Title: Study of electronic properties, Magnetization and persistent currents in
a mesoscopic ring by controlled curvature
- Authors: Lu\'is Fernando C. Pereira, Fabiano M. Andrade, Cleverson Filgueiras,
Edilberto O. Silva
- Abstract summary: We study the model of a noninteracting spinless electron gas confined to the two-dimensional localized surface of a cone in the presence of external magnetic fields.
We write the Schr"odinger equation and use the thin-layer quantization procedure to calculate the wavefunctions and the energy spectrum.
- Score: 1.7637225649382287
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the model of a noninteracting spinless electron gas confined to the
two-dimensional localized surface of a cone in the presence of external
magnetic fields. The localized region is characterized by an annular radial
potential. We write the Schr\"{o}dinger equation and use the thin-layer
quantization procedure to calculate the wavefunctions and the energy spectrum.
In such a procedure, it arises a geometry induced potential, which depends on
both the mean and the Gaussian curvatures. Nevertheless, since we consider a
ring with a mesoscopic size, the effects of the Gaussian curvature on the
energy spectrum are negligible. The magnetization and the persistent current
are analyzed. In the former, we observed the Aharonov-Bohm (AB) and de Haas-van
Alphen (dHvA) types oscillations. In the latter, it is observed only the AB
type oscillations. In both cases, the curvature increases the amplitude of the
oscillations.
Related papers
- Magnetoresistance oscillations induced by geometry in a two-dimensional quantum ring [0.0]
We consider a GaAs device having an average radius of $800hspace0.05cmtextnm$ in different regimes of subband occupation at non-zero temperature.
We explore how the modified surface affects the Van-Hoove conductance singularities and the magnetoresistance interference patterns resulting from the Aharonov-Bohm oscillations of different frequencies.
arXiv Detail & Related papers (2024-06-21T13:54:40Z) - Study on the effects of anisotropic effective mass on electronic
properties, magnetization and persistent current in semiconductor quantum
ring with conical geometry [2.3353925077667923]
We study a 2D mesoscopic ring with an anisotropic effective mass considering surface quantum confinement effects.
We demonstrate through numerical analysis that the electronic properties, the magnetization, and the persistent current undergo significant changes due to quantum confinement and non-isotropic mass.
arXiv Detail & Related papers (2023-11-16T12:40:08Z) - Divergent absorption from spin-orbit interaction in distorted Landau
levels [0.0]
Effect of spin-orbit (and Darwin) interaction on a 2D electron gas subject to a radial, inhomogeneous $1/r$-magnetic field is discussed analytically.
Numerical calculation of the absorptive spin-orbit spectra show for an ideal InSb electron gas a behaviour that is dominated by the localized (atomic) part of the distorted Landau levels.
We show analytically the emergence of a discrete Rydberg-like band structure that obeys these symmetry properties.
arXiv Detail & Related papers (2023-03-02T14:09:38Z) - Non-relativistic quantum particles interacting with pseudoharmonic-type
potential under flux field in a topological defect geometry [0.0]
We investigate the quantum motions of non-relativistic particles interacting with a potential in the presence of the Aharonov-Bohm flux field.
Our findings reveal that the eigenvalue solutions are significantly influenced by the topological defect characterized by the parameter $beta$.
This influence manifests as a shift in the energy spectrum, drawing parallels to the gravitational analog of the Aharonov-Bohm effect.
arXiv Detail & Related papers (2023-02-01T17:45:02Z) - Dispersive readout of molecular spin qudits [68.8204255655161]
We study the physics of a magnetic molecule described by a "giant" spin with multiple $d > 2$ spin states.
We derive an expression for the output modes in the dispersive regime of operation.
We find that the measurement of the cavity transmission allows to uniquely determine the spin state of the qudits.
arXiv Detail & Related papers (2021-09-29T18:00:09Z) - Rotating Majorana Zero Modes in a disk geometry [75.34254292381189]
We study the manipulation of Majorana zero modes in a thin disk made from a $p$-wave superconductor.
We analyze the second-order topological corner modes that arise when an in-plane magnetic field is applied.
We show that oscillations persist even in the adiabatic phase because of a frequency independent coupling between zero modes and excited states.
arXiv Detail & Related papers (2021-09-08T11:18:50Z) - Interaction of the magnetic quadrupole moment of a non-relativistic
particle with an electric field in the background of screw dislocations with
a rotating frame [0.0]
We consider a moving particle with a magnetic quadrupole moment in an elastic medium in the presence of a screw dislocation.
We derive wave and energy eigenvalue functions by employing analytical methods for two interaction configurations.
Due to the topological defect in the medium, we observed a shift in the angular momentum quantum number which affects the energy eigenvalues and the wave function of the system.
arXiv Detail & Related papers (2021-06-08T20:20:30Z) - Effect of phonons on the electron spin resonance absorption spectrum [62.997667081978825]
We model the effect of phonons and temperature on the electron spin resonance (ESR) signal in magnetically active systems.
We find that the suppression of ESR signals is due to phonon broadening but not based on the common assumption of orbital quenching.
arXiv Detail & Related papers (2020-04-22T01:13:07Z) - Zitterbewegung and Klein-tunneling phenomena for transient quantum waves [77.34726150561087]
We show that the Zitterbewegung effect manifests itself as a series of quantum beats of the particle density in the long-time limit.
We also find a time-domain where the particle density of the point source is governed by the propagation of a main wavefront.
The relative positions of these wavefronts are used to investigate the time-delay of quantum waves in the Klein-tunneling regime.
arXiv Detail & Related papers (2020-03-09T21:27:02Z) - Optical Magnetometer: Quantum Resonances at pumping repetition rate of
1/n of the Larmor frequency [58.720142291102135]
Quantum sub-resonances at a repetition rate of $1/n$ of the Larmor frequency of the magnetic field inside the shield are experimentally observed and theoretically explained.
Investigations in single alkali atoms cells as well as mixed alkali atoms of K and Rb are presented.
arXiv Detail & Related papers (2020-02-20T09:14:56Z) - Spin current generation and control in carbon nanotubes by combining
rotation and magnetic field [78.72753218464803]
We study the quantum dynamics of ballistic electrons in rotating carbon nanotubes in the presence of a uniform magnetic field.
By suitably combining the applied magnetic field intensity and rotation speed, one can tune one of the currents to zero while keeping the other one finite, giving rise to a spin current generator.
arXiv Detail & Related papers (2020-01-20T08:54:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.