Reducing the impact of radioactivity on quantum circuits in a
deep-underground facility
- URL: http://arxiv.org/abs/2005.02286v1
- Date: Tue, 5 May 2020 15:37:43 GMT
- Title: Reducing the impact of radioactivity on quantum circuits in a
deep-underground facility
- Authors: Laura Cardani, Francesco Valenti, Nicola Casali, Gianluigi Catelani,
Thibault Charpentier, Massimiliano Clemenza, Ivan Colantoni, Angelo Cruciani,
Luca Gironi, Lukas Gr\"unhaupt, Daria Gusenkova, Fabio Henriques, Marc
Lagoin, Maria Martinez, Giorgio Pettinari, Claudia Rusconi, Oliver Sander,
Alexey V. Ustinov, Marc Weber, Wolfgang Wernsdorfer, Marco Vignati, Stefano
Pirro, Ioan M. Pop
- Abstract summary: Coherence times of superconducting circuits have increased from nanoseconds to hundreds of microseconds.
Coherence needs to further improve by orders of magnitude to reduce the prohibitive hardware overhead of current error correction schemes.
We show that environmental radioactivity is a significant source of nonequilibrium quasiparticles.
- Score: 0.36954891170556703
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As quantum coherence times of superconducting circuits have increased from
nanoseconds to hundreds of microseconds, they are currently one of the leading
platforms for quantum information processing. However, coherence needs to
further improve by orders of magnitude to reduce the prohibitive hardware
overhead of current error correction schemes. Reaching this goal hinges on
reducing the density of broken Cooper pairs, so-called quasiparticles. Here, we
show that environmental radioactivity is a significant source of nonequilibrium
quasiparticles. Moreover, ionizing radiation introduces time-correlated
quasiparticle bursts in resonators on the same chip, further complicating
quantum error correction. Operating in a deep-underground lead-shielded
cryostat decreases the quasiparticle burst rate by a factor fifty and reduces
dissipation up to a factor four, showcasing the importance of radiation
abatement in future solid-state quantum hardware.
Related papers
- Elastic scattering on a quantum computer [0.0]
We calculate the two-particle elastic scattering phase shift for a short-ranged interaction on a quantum computer.
Schmidt decomposition is used to reduce quantum circuits nominally requiring tens of qubits to 2-qubit circuits.
arXiv Detail & Related papers (2024-06-13T15:31:38Z) - Quantum error mitigation for Fourier moment computation [49.1574468325115]
This paper focuses on the computation of Fourier moments within the context of a nuclear effective field theory on superconducting quantum hardware.
The study integrates echo verification and noise renormalization into Hadamard tests using control reversal gates.
The analysis, conducted using noise models, reveals a significant reduction in noise strength by two orders of magnitude.
arXiv Detail & Related papers (2024-01-23T19:10:24Z) - Suppressing Amplitude Damping in Trapped Ions: Discrete Weak
Measurements for a Non-unitary Probabilistic Noise Filter [62.997667081978825]
We introduce a low-overhead protocol to reverse this degradation.
We present two trapped-ion schemes for the implementation of a non-unitary probabilistic filter against amplitude damping noise.
This filter can be understood as a protocol for single-copy quasi-distillation.
arXiv Detail & Related papers (2022-09-06T18:18:41Z) - Mitigation of quasiparticle loss in superconducting qubits by phonon
scattering [2.959938599901649]
In superconducting qubits the assumption that errors are sufficiently uncorrelated in space and time is violated by ionizing radiation.
A potential mitigation technique is to place large volumes of normal or superconducting metal on the device, capable of reducing the phonon energy to below the superconducting gap of the qubits.
We investigate the effectiveness of this method in protecting superconducting qubit processors against correlated errors from ionizing radiation.
arXiv Detail & Related papers (2022-07-26T09:02:30Z) - High-efficiency microwave-optical quantum transduction based on a cavity
electro-optic superconducting system with long coherence time [52.77024349608834]
Frequency conversion between microwave and optical photons is a key enabling technology to create links between superconducting quantum processors.
We propose a microwave-optical platform based on long-coherence-time superconducting radio-frequency (SRF) cavities.
We show that the fidelity of heralded entanglement generation between two remote quantum systems is enhanced by the low microwave losses.
arXiv Detail & Related papers (2022-06-30T17:57:37Z) - Phonon downconversion to suppress correlated errors in superconducting
qubits [0.0]
High-energy particle impacts from background radioactivity produce energetic phonons that travel throughout the substrate and create excitations above the superconducting ground state.
We use normal metal reservoirs on the chip back side to downconvert phonons to low energies where they can no longer poison qubits.
We examine quasiparticle poisoning on chips with and without back-side metallization and demonstrate a reduction in the flux of pair-breaking phonons by over a factor of 20.
arXiv Detail & Related papers (2022-03-13T06:30:07Z) - Slowing down light in a qubit metamaterial [98.00295925462214]
superconducting circuits in the microwave domain still lack such devices.
We demonstrate slowing down electromagnetic waves in a superconducting metamaterial composed of eight qubits coupled to a common waveguide.
Our findings demonstrate high flexibility of superconducting circuits to realize custom band structures.
arXiv Detail & Related papers (2022-02-14T20:55:10Z) - Two-particle time-domain interferometry in the Fractional Quantum Hall
Effect regime [0.0]
We consider anyons, the fractionally charged quasi-particles 20 of the Fractional Quantum Hall Effect occurring in two-dimensional electronic conductors in high magnetic fields.
Surprisingly, anyons show large quantum coherence when transmitted through the localized states of electronic Fabry-P'erot interferometers, but almost no quantum interference when transmitted via the propagating states of Mach-Zehnder interferometers.
arXiv Detail & Related papers (2022-01-24T09:54:01Z) - Probing the coherence of solid-state qubits at avoided crossings [51.805457601192614]
We study the quantum dynamics of paramagnetic defects interacting with a nuclear spin bath at avoided crossings.
The proposed theoretical approach paves the way to designing the coherence properties of spin qubits from first principles.
arXiv Detail & Related papers (2020-10-21T15:37:59Z) - Universal coherence protection in a solid-state spin qubit [95.73841600562527]
We construct a robust qubit embedded in a decoherence-protected subspace.
The qubit is protected from magnetic, electric, and temperature fluctuations.
This results in an increase of the qubit's inhomogeneous dephasing time by over four orders of magnitude.
arXiv Detail & Related papers (2020-05-12T22:44:23Z) - Impact of ionizing radiation on superconducting qubit coherence [43.13648171914508]
We show that environmental radioactive materials and cosmic rays contribute to an elevated quasiparticle density that would limit superconducting qubits of the type measured here to coherence times in the millisecond regime.
Introducing radiation shielding reduces the flux of ionizing radiation and positively correlates with increased coherence time.
arXiv Detail & Related papers (2020-01-24T20:59:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.