Evolutionary Multi-Objective Design of SARS-CoV-2 Protease Inhibitor
Candidates
- URL: http://arxiv.org/abs/2005.02666v2
- Date: Mon, 18 May 2020 13:35:31 GMT
- Title: Evolutionary Multi-Objective Design of SARS-CoV-2 Protease Inhibitor
Candidates
- Authors: Tim Cofala, Lars Elend, Philip Mirbach, Jonas Prellberg, Thomas
Teusch, Oliver Kramer
- Abstract summary: We propose an evolutionary multi-objective algorithm (EMOA) to design potential protease inhibitors for SARS-CoV-2's main protease.
Based on the SELFIES representation the EMOA maximizes the binding of candidate to the protein using the docking tool QuickVina 2.
The experimental part analyzes the evolutionary process and discusses the inhibitor candidates.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Computational drug design based on artificial intelligence is an emerging
research area. At the time of writing this paper, the world suffers from an
outbreak of the coronavirus SARS-CoV-2. A promising way to stop the virus
replication is via protease inhibition. We propose an evolutionary
multi-objective algorithm (EMOA) to design potential protease inhibitors for
SARS-CoV-2's main protease. Based on the SELFIES representation the EMOA
maximizes the binding of candidate ligands to the protein using the docking
tool QuickVina 2, while at the same time taking into account further objectives
like drug-likeliness or the fulfillment of filter constraints. The experimental
part analyzes the evolutionary process and discusses the inhibitor candidates.
Related papers
- Opponent Shaping for Antibody Development [49.26728828005039]
Anti-viral therapies are typically designed to target only the current strains of a virus.
therapy-induced selective pressures act on viruses to drive the emergence of mutated strains, against which initial therapies have reduced efficacy.
We build on a computational model of binding between antibodies and viral antigens to implement a genetic simulation of viral evolutionary escape.
arXiv Detail & Related papers (2024-09-16T14:56:27Z) - Vaxformer: Antigenicity-controlled Transformer for Vaccine Design
Against SARS-CoV-2 [0.6850683267295248]
The present study proposes a novel conditional protein Language Model architecture, called Vaxformer.
Vaxformer is designed to produce natural-looking antigenicity-controlled SARS-CoV-2 spike proteins.
arXiv Detail & Related papers (2023-05-18T13:36:57Z) - Virus2Vec: Viral Sequence Classification Using Machine Learning [48.40285316053593]
We propose Virus2Vec, a feature-vector representation for viral sequences that enable machine learning models to identify viral hosts.
We empirically evaluate Virus2Vec on real-world spike sequences of Coronaviridae and rabies virus sequence data to predict the host.
Our results demonstrate that Virus2Vec outperforms the predictive accuracies of baseline and state-of-the-art methods.
arXiv Detail & Related papers (2023-04-24T08:17:16Z) - Accelerating Inhibitor Discovery for Multiple SARS-CoV-2 Targets with a
Single, Sequence-Guided Deep Generative Framework [47.14853881703749]
We demonstrate the broad utility of a single deep generative framework toward discovering novel drug-like inhibitor molecules.
To perform target-aware design, the framework employs a target sequence-conditioned sampling of novel molecules from a generative model.
The most potent spike RBD inhibitor also emerged as a rare non-covalent antiviral with broad-spectrum activity against several SARS-CoV-2 variants.
arXiv Detail & Related papers (2022-04-19T17:59:46Z) - Using Deep Learning Sequence Models to Identify SARS-CoV-2 Divergence [1.9573380763700707]
SARS-CoV-2 is an upper respiratory system RNA virus that has caused over 3 million deaths and infecting over 150 million worldwide as of May 2021.
We propose a neural network model that leverages recurrent and convolutional units to take in amino acid sequences of spike proteins and classify corresponding clades.
arXiv Detail & Related papers (2021-11-12T07:52:11Z) - A k-mer Based Approach for SARS-CoV-2 Variant Identification [55.78588835407174]
We show that preserving the order of the amino acids helps the underlying classifiers to achieve better performance.
We also show the importance of the different amino acids which play a key role in identifying variants and how they coincide with those reported by the USA's Centers for Disease Control and Prevention (CDC)
arXiv Detail & Related papers (2021-08-07T15:08:15Z) - Evening the Score: Targeting SARS-CoV-2 Protease Inhibition in Graph
Generative Models for Therapeutic Candidates [11.853524110656991]
We look at the therapeutic design of novel drug candidates targeting SARS-CoV-2 viral proteins.
We use an autoencoder that generates molecules with similar structures to a dataset of drugs with anti-SARS activity.
During generation, we explore optimization toward several design targets to balance druglikeness, synthetic accessability, and anti-SARS activity.
arXiv Detail & Related papers (2021-05-07T18:39:25Z) - Designing a Prospective COVID-19 Therapeutic with Reinforcement Learning [50.57291257437373]
SARS-CoV-2 pandemic has created a global race for a cure.
One approach focuses on designing a novel variant of the human angiotensin-converting enzyme 2 (ACE2)
We formulate a novel protein design framework as a reinforcement learning problem.
arXiv Detail & Related papers (2020-12-03T07:35:38Z) - PaccMann$^{RL}$ on SARS-CoV-2: Designing antiviral candidates with
conditional generative models [2.0750380105212116]
With the fast development of COVID-19 into a global pandemic, scientists around the globe are desperately searching for effective antiviral therapeutic agents.
We propose a deep learning framework for conditional de novo design of antiviral candidate drugs tailored against given protein targets.
arXiv Detail & Related papers (2020-05-27T11:30:15Z) - Accelerating Antimicrobial Discovery with Controllable Deep Generative
Models and Molecular Dynamics [109.70543391923344]
CLaSS (Controlled Latent attribute Space Sampling) is an efficient computational method for attribute-controlled generation of molecules.
We screen the generated molecules for additional key attributes by using deep learning classifiers in conjunction with novel features derived from atomistic simulations.
The proposed approach is demonstrated for designing non-toxic antimicrobial peptides (AMPs) with strong broad-spectrum potency.
arXiv Detail & Related papers (2020-05-22T15:57:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.