Seeing the Forest and the Trees: Detection and Cross-Document
Coreference Resolution of Militarized Interstate Disputes
- URL: http://arxiv.org/abs/2005.02966v1
- Date: Wed, 6 May 2020 17:20:14 GMT
- Title: Seeing the Forest and the Trees: Detection and Cross-Document
Coreference Resolution of Militarized Interstate Disputes
- Authors: Benjamin J. Radford
- Abstract summary: I provide a data set for evaluating methods to identify certain political events in text and to link related texts to one another based on shared events.
The data set, Headlines of War, is built on the Militarized Interstate Disputes data set and offers headlines classified by dispute status and headline pairs labeled with coreference indicators.
I introduce a model capable of accomplishing both tasks. The multi-task convolutional neural network is shown to be capable of recognizing events and event coreferences given the headlines' texts and publication dates.
- Score: 3.8073142980733
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Previous efforts to automate the detection of social and political events in
text have primarily focused on identifying events described within single
sentences or documents. Within a corpus of documents, these automated systems
are unable to link event references -- recognize singular events across
multiple sentences or documents. A separate literature in computational
linguistics on event coreference resolution attempts to link known events to
one another within (and across) documents. I provide a data set for evaluating
methods to identify certain political events in text and to link related texts
to one another based on shared events. The data set, Headlines of War, is built
on the Militarized Interstate Disputes data set and offers headlines classified
by dispute status and headline pairs labeled with coreference indicators.
Additionally, I introduce a model capable of accomplishing both tasks. The
multi-task convolutional neural network is shown to be capable of recognizing
events and event coreferences given the headlines' texts and publication dates.
Related papers
- Event GDR: Event-Centric Generative Document Retrieval [37.53593254200252]
We propose Event GDR, an event-centric generative document retrieval model.
We employ events and relations to model the document to guarantee the comprehensiveness and inner-content correlation.
For identifier construction, we map the events to well-defined event taxonomy to construct the identifiers with explicit semantic structure.
arXiv Detail & Related papers (2024-05-11T02:55:11Z) - Double Mixture: Towards Continual Event Detection from Speech [60.33088725100812]
Speech event detection is crucial for multimedia retrieval, involving the tagging of both semantic and acoustic events.
This paper tackles two primary challenges in speech event detection: the continual integration of new events without forgetting previous ones, and the disentanglement of semantic from acoustic events.
We propose a novel method, 'Double Mixture,' which merges speech expertise with robust memory mechanisms to enhance adaptability and prevent forgetting.
arXiv Detail & Related papers (2024-04-20T06:32:00Z) - Towards Event Extraction from Speech with Contextual Clues [61.164413398231254]
We introduce the Speech Event Extraction (SpeechEE) task and construct three synthetic training sets and one human-spoken test set.
Compared to event extraction from text, SpeechEE poses greater challenges mainly due to complex speech signals that are continuous and have no word boundaries.
Our method brings significant improvements on all datasets, achieving a maximum F1 gain of 10.7%.
arXiv Detail & Related papers (2024-01-27T11:07:19Z) - MUSIED: A Benchmark for Event Detection from Multi-Source Heterogeneous
Informal Texts [7.43647091073357]
Event detection (ED) identifies and classifies event triggers from unstructured texts.
We propose a new large-scale Chinese event detection dataset based on user reviews, text conversations, and phone conversations.
arXiv Detail & Related papers (2022-11-25T05:05:29Z) - Unifying Event Detection and Captioning as Sequence Generation via
Pre-Training [53.613265415703815]
We propose a unified pre-training and fine-tuning framework to enhance the inter-task association between event detection and captioning.
Our model outperforms the state-of-the-art methods, and can be further boosted when pre-trained on extra large-scale video-text data.
arXiv Detail & Related papers (2022-07-18T14:18:13Z) - Unsupervised Key Event Detection from Massive Text Corpora [42.31889135421941]
We propose a new task, key event detection at the intermediate level, aiming to detect from a news corpus key events.
This task can bridge event understanding and structuring and is inherently challenging because of the thematic and temporal closeness of key events.
We develop an unsupervised key event detection framework, EvMine, that extracts temporally frequent peak phrases using a novel ttf-itf score.
arXiv Detail & Related papers (2022-06-08T20:31:02Z) - Integrating Deep Event-Level and Script-Level Information for Script
Event Prediction [60.67635412135681]
We propose a Transformer-based model, called MCPredictor, which integrates deep event-level and script-level information for script event prediction.
The experimental results on the widely-used New York Times corpus demonstrate the effectiveness and superiority of the proposed model.
arXiv Detail & Related papers (2021-09-24T07:37:32Z) - Pairwise Representation Learning for Event Coreference [73.10563168692667]
We develop a Pairwise Representation Learning (PairwiseRL) scheme for the event mention pairs.
Our representation supports a finer, structured representation of the text snippet to facilitate encoding events and their arguments.
We show that PairwiseRL, despite its simplicity, outperforms the prior state-of-the-art event coreference systems on both cross-document and within-document event coreference benchmarks.
arXiv Detail & Related papers (2020-10-24T06:55:52Z) - Detecting Ongoing Events Using Contextual Word and Sentence Embeddings [110.83289076967895]
This paper introduces the Ongoing Event Detection (OED) task.
The goal is to detect ongoing event mentions only, as opposed to historical, future, hypothetical, or other forms or events that are neither fresh nor current.
Any application that needs to extract structured information about ongoing events from unstructured texts can take advantage of an OED system.
arXiv Detail & Related papers (2020-07-02T20:44:05Z) - Embed2Detect: Temporally Clustered Embedded Words for Event Detection in
Social Media [1.7205106391379026]
The adoption of word embeddings gives Embed2Detect the capability to incorporate powerful semantical features into event detection.
The obtained results show that Embed2Detect is capable of effective and efficient event detection.
arXiv Detail & Related papers (2020-06-10T15:52:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.