City limits in the age of smartphones and urban scaling
- URL: http://arxiv.org/abs/2005.02978v1
- Date: Wed, 6 May 2020 17:31:21 GMT
- Title: City limits in the age of smartphones and urban scaling
- Authors: Boris Sotomayor-G\'omez and Horacio Samaniego
- Abstract summary: Urban planning still lacks appropriate standards to define city boundaries across urban systems.
ICT provide the potential to portray more accurate descriptions of the urban systems.
We apply computational techniques over a large volume of mobile phone records to define urban boundaries.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Urban planning still lacks appropriate standards to define city boundaries
across urban systems. This issue has historically been left to administrative
criteria, which can vary significantly across countries and political systems,
hindering a comparative analysis across urban systems. However, the wide use of
Information and Communication Technologies (ICT) has now allowed the
development of new quantitative approaches to unveil how social dynamics
relates to urban infrastructure. In fact, ICT provide the potential to portray
more accurate descriptions of the urban systems based on the empirical analysis
of millions of traces left by urbanites across the city. In this work, we apply
computational techniques over a large volume of mobile phone records to define
urban boundaries, through the analysis of travel patterns and the trajectory of
urban dwellers in conurbations with more than 100,000 inhabitants in Chile. We
created and analyzed the network of interconnected places inferred from
individual travel trajectories. We then ranked each place using a spectral
centrality method. This allowed to identify places of higher concurrency and
functional importance for each urban environment. Urban scaling analysis is
finally used as a diagnostic tool that allowed to distinguish urban from
non-urban spaces. The geographic assessment of our method shows a high
congruence with the current and administrative definitions of urban
agglomerations in Chile. Our results can potentially be considered as a
functional definition of the urban boundary. They also provide a practical
implementation of urban scaling and data-driven approaches on cities as complex
systems using increasingly larger non-conventional datasets.
Related papers
- Urban Generative Intelligence (UGI): A Foundational Platform for Agents
in Embodied City Environment [32.53845672285722]
Urban environments, characterized by their complex, multi-layered networks, face significant challenges in the face of rapid urbanization.
Recent developments in big data, artificial intelligence, urban computing, and digital twins have laid the groundwork for sophisticated city modeling and simulation.
This paper proposes Urban Generative Intelligence (UGI), a novel foundational platform integrating Large Language Models (LLMs) into urban systems.
arXiv Detail & Related papers (2023-12-19T03:12:13Z) - Cross-City Matters: A Multimodal Remote Sensing Benchmark Dataset for
Cross-City Semantic Segmentation using High-Resolution Domain Adaptation
Networks [82.82866901799565]
We build a new set of multimodal remote sensing benchmark datasets (including hyperspectral, multispectral, SAR) for the study purpose of the cross-city semantic segmentation task.
Beyond the single city, we propose a high-resolution domain adaptation network, HighDAN, to promote the AI model's generalization ability from the multi-city environments.
HighDAN is capable of retaining the spatially topological structure of the studied urban scene well in a parallel high-to-low resolution fusion fashion.
arXiv Detail & Related papers (2023-09-26T23:55:39Z) - Unified Data Management and Comprehensive Performance Evaluation for
Urban Spatial-Temporal Prediction [Experiment, Analysis & Benchmark] [78.05103666987655]
This work addresses challenges in accessing and utilizing diverse urban spatial-temporal datasets.
We introduceatomic files, a unified storage format designed for urban spatial-temporal big data, and validate its effectiveness on 40 diverse datasets.
We conduct extensive experiments using diverse models and datasets, establishing a performance leaderboard and identifying promising research directions.
arXiv Detail & Related papers (2023-08-24T16:20:00Z) - The Urban Toolkit: A Grammar-based Framework for Urban Visual Analytics [5.674216760436341]
The complex nature of urban issues and the overwhelming amount of available data have posed significant challenges in translating these efforts into actionable insights.
When analyzing a feature of interest, an urban expert must transform, integrate, and visualize different thematic (e.g., sunlight access, demographic) and physical (e.g., buildings, street networks) data layers.
This makes the entire visual data exploration and system implementation difficult for programmers and also sets a high entry barrier for urban experts outside of computer science.
arXiv Detail & Related papers (2023-08-15T13:43:04Z) - UrbanBIS: a Large-scale Benchmark for Fine-grained Urban Building
Instance Segmentation [50.52615875873055]
UrbanBIS comprises six real urban scenes, with 2.5 billion points, covering a vast area of 10.78 square kilometers.
UrbanBIS provides semantic-level annotations on a rich set of urban objects, including buildings, vehicles, vegetation, roads, and bridges.
UrbanBIS is the first 3D dataset that introduces fine-grained building sub-categories.
arXiv Detail & Related papers (2023-05-04T08:01:38Z) - A Contextual Master-Slave Framework on Urban Region Graph for Urban
Village Detection [68.84486900183853]
We build an urban region graph (URG) to model the urban area in a hierarchically structured way.
Then, we design a novel contextual master-slave framework to effectively detect the urban village from the URG.
The proposed framework can learn to balance the generality and specificity for UV detection in an urban area.
arXiv Detail & Related papers (2022-11-26T18:17:39Z) - Neural Embeddings of Urban Big Data Reveal Emergent Structures in Cities [7.148078723492643]
We propose using a neural embedding model-graph neural network (GNN)- that leverages the heterogeneous features of urban areas.
Using large-scale high-resolution mobility data sets from millions of aggregated and anonymized mobile phone users in 16 metropolitan counties in the United States, we demonstrate that our embeddings encode complex relationships among features related to urban components.
We show that embeddings generated by a model trained on a different county can capture 50% to 60% of the emergent spatial structure in another county.
arXiv Detail & Related papers (2021-10-24T07:13:14Z) - Methodological Foundation of a Numerical Taxonomy of Urban Form [62.997667081978825]
We present a method for numerical taxonomy of urban form derived from biological systematics.
We derive homogeneous urban tissue types and, by determining overall morphological similarity between them, generate a hierarchical classification of urban form.
After framing and presenting the method, we test it on two cities - Prague and Amsterdam.
arXiv Detail & Related papers (2021-04-30T12:47:52Z) - Empowering Urban Governance through Urban Science: Multi-scale Dynamics
of Urban Systems Worldwide [0.0]
The current science of cities can provide a useful foundation for future urban policies.
International comparisons of the evolution of cities often produce uncertain results because national territorial frameworks are not always in strict correspondence with the dynamics of urban systems.
We propose to provide various compositions of systems of cities to better take into account the dynamic networking of cities that go beyond regional and national territorial boundaries.
arXiv Detail & Related papers (2020-05-20T12:47:40Z) - Measuring Spatial Subdivisions in Urban Mobility with Mobile Phone Data [58.720142291102135]
By 2050 two thirds of the world population will reside in urban areas.
This growth is faster and more complex than the ability of cities to measure and plan for their sustainability.
To understand what makes a city inclusive for all, we define a methodology to identify and characterize spatial subdivisions.
arXiv Detail & Related papers (2020-02-20T14:37:46Z) - Indexical Cities: Articulating Personal Models of Urban Preference with
Geotagged Data [0.0]
This research characterizes personal preference in urban spaces and predicts a spectrum of unknown likeable places for a specific observer.
Unlike most urban perception studies, our intention is not by any means to provide an objective measure of urban quality, but rather to portray personal views of the city or Cities of Cities.
arXiv Detail & Related papers (2020-01-23T11:00:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.