Reducing Communication in Graph Neural Network Training
- URL: http://arxiv.org/abs/2005.03300v3
- Date: Wed, 2 Sep 2020 20:35:32 GMT
- Title: Reducing Communication in Graph Neural Network Training
- Authors: Alok Tripathy, Katherine Yelick, Aydin Buluc
- Abstract summary: Graph Neural Networks (GNNs) are powerful and flexible neural networks that use the naturally sparse connectivity information of the data.
We introduce a family of parallel algorithms for training GNNs and show that they canally reduce communication compared to previous parallel GNN training methods.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph Neural Networks (GNNs) are powerful and flexible neural networks that
use the naturally sparse connectivity information of the data. GNNs represent
this connectivity as sparse matrices, which have lower arithmetic intensity and
thus higher communication costs compared to dense matrices, making GNNs harder
to scale to high concurrencies than convolutional or fully-connected neural
networks.
We introduce a family of parallel algorithms for training GNNs and show that
they can asymptotically reduce communication compared to previous parallel GNN
training methods. We implement these algorithms, which are based on 1D, 1.5D,
2D, and 3D sparse-dense matrix multiplication, using torch.distributed on
GPU-equipped clusters. Our algorithms optimize communication across the full
GNN training pipeline. We train GNNs on over a hundred GPUs on multiple
datasets, including a protein network with over a billion edges.
Related papers
- Graph Coordinates and Conventional Neural Networks -- An Alternative for
Graph Neural Networks [0.10923877073891444]
We propose Topology Coordinate Neural Network (TCNN) and Directional Virtual Coordinate Neural Network (DVCNN) as novel alternatives to message passing GNNs.
TCNN and DVCNN achieve competitive or superior performance to message passing GNNs.
Our work expands the toolbox of techniques for graph-based machine learning.
arXiv Detail & Related papers (2023-12-03T10:14:10Z) - GNNPipe: Scaling Deep GNN Training with Pipelined Model Parallelism [10.723541176359452]
Communication is a key bottleneck for distributed graph neural network (GNN) training.
GNNPipe is a new approach that scales the distributed full-graph deep GNN training.
arXiv Detail & Related papers (2023-08-19T18:44:14Z) - You Can Have Better Graph Neural Networks by Not Training Weights at
All: Finding Untrained GNNs Tickets [105.24703398193843]
Untrainedworks in graph neural networks (GNNs) still remains mysterious.
We show that the found untrainedworks can substantially mitigate the GNN over-smoothing problem.
We also observe that such sparse untrainedworks have appealing performance in out-of-distribution detection and robustness of input perturbations.
arXiv Detail & Related papers (2022-11-28T14:17:36Z) - Distributed Graph Neural Network Training: A Survey [51.77035975191926]
Graph neural networks (GNNs) are a type of deep learning models that are trained on graphs and have been successfully applied in various domains.
Despite the effectiveness of GNNs, it is still challenging for GNNs to efficiently scale to large graphs.
As a remedy, distributed computing becomes a promising solution of training large-scale GNNs.
arXiv Detail & Related papers (2022-11-01T01:57:00Z) - AdaGNN: A multi-modal latent representation meta-learner for GNNs based
on AdaBoosting [0.38073142980733]
Graph Neural Networks (GNNs) focus on extracting intrinsic network features.
We propose boosting-based meta learner for GNNs.
AdaGNN performs exceptionally well for applications with rich and diverse node neighborhood information.
arXiv Detail & Related papers (2021-08-14T03:07:26Z) - Training Graph Neural Networks with 1000 Layers [133.84813995275988]
We study reversible connections, group convolutions, weight tying, and equilibrium models to advance the memory and parameter efficiency of GNNs.
To the best of our knowledge, RevGNN-Deep is the deepest GNN in the literature by one order of magnitude.
arXiv Detail & Related papers (2021-06-14T15:03:00Z) - DistGNN: Scalable Distributed Training for Large-Scale Graph Neural
Networks [58.48833325238537]
Full-batch training on Graph Neural Networks (GNN) to learn the structure of large graphs is a critical problem that needs to scale to hundreds of compute nodes to be feasible.
In this paper, we presentGNN that optimize the well-known Deep Graph Library (DGL) for full-batch training on CPU clusters.
Our results on four common GNN benchmark datasets show up to 3.7x speed-up using a single CPU socket and up to 97x speed-up using 128 CPU sockets.
arXiv Detail & Related papers (2021-04-14T08:46:35Z) - A Unified Lottery Ticket Hypothesis for Graph Neural Networks [82.31087406264437]
We present a unified GNN sparsification (UGS) framework that simultaneously prunes the graph adjacency matrix and the model weights.
We further generalize the popular lottery ticket hypothesis to GNNs for the first time, by defining a graph lottery ticket (GLT) as a pair of core sub-dataset and sparse sub-network.
arXiv Detail & Related papers (2021-02-12T21:52:43Z) - Binary Graph Neural Networks [69.51765073772226]
Graph Neural Networks (GNNs) have emerged as a powerful and flexible framework for representation learning on irregular data.
In this paper, we present and evaluate different strategies for the binarization of graph neural networks.
We show that through careful design of the models, and control of the training process, binary graph neural networks can be trained at only a moderate cost in accuracy on challenging benchmarks.
arXiv Detail & Related papers (2020-12-31T18:48:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.