Neural Object Learning for 6D Pose Estimation Using a Few Cluttered
Images
- URL: http://arxiv.org/abs/2005.03717v2
- Date: Fri, 21 Aug 2020 15:28:16 GMT
- Title: Neural Object Learning for 6D Pose Estimation Using a Few Cluttered
Images
- Authors: Kiru Park, Timothy Patten, Markus Vincze
- Abstract summary: Recent methods for 6D pose estimation of objects assume either textured 3D models or real images that cover the entire range of target poses.
This paper proposes a method, Neural Object Learning (NOL), that creates synthetic images of objects in arbitrary poses by combining only a few observations from cluttered images.
- Score: 30.240630713652035
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent methods for 6D pose estimation of objects assume either textured 3D
models or real images that cover the entire range of target poses. However, it
is difficult to obtain textured 3D models and annotate the poses of objects in
real scenarios. This paper proposes a method, Neural Object Learning (NOL),
that creates synthetic images of objects in arbitrary poses by combining only a
few observations from cluttered images. A novel refinement step is proposed to
align inaccurate poses of objects in source images, which results in better
quality images. Evaluations performed on two public datasets show that the
rendered images created by NOL lead to state-of-the-art performance in
comparison to methods that use 13 times the number of real images. Evaluations
on our new dataset show multiple objects can be trained and recognized
simultaneously using a sequence of a fixed scene.
Related papers
- Learning a Category-level Object Pose Estimator without Pose Annotations [37.03715008347576]
We propose to learn a category-level 3D object pose estimator without pose annotations.
Instead of using manually annotated images, we leverage diffusion models to generate a set of images under controlled pose differences.
We show that our method has the capability of category-level object pose estimation from a single shot setting.
arXiv Detail & Related papers (2024-04-08T15:59:29Z) - LocaliseBot: Multi-view 3D object localisation with differentiable
rendering for robot grasping [9.690844449175948]
We focus on object pose estimation.
Our approach relies on three pieces of information: multiple views of the object, the camera's parameters at those viewpoints, and 3D CAD models of objects.
We show that the estimated object pose results in 99.65% grasp accuracy with the ground truth grasp candidates.
arXiv Detail & Related papers (2023-11-14T14:27:53Z) - NOPE: Novel Object Pose Estimation from a Single Image [67.11073133072527]
We propose an approach that takes a single image of a new object as input and predicts the relative pose of this object in new images without prior knowledge of the object's 3D model.
We achieve this by training a model to directly predict discriminative embeddings for viewpoints surrounding the object.
This prediction is done using a simple U-Net architecture with attention and conditioned on the desired pose, which yields extremely fast inference.
arXiv Detail & Related papers (2023-03-23T18:55:43Z) - MegaPose: 6D Pose Estimation of Novel Objects via Render & Compare [84.80956484848505]
MegaPose is a method to estimate the 6D pose of novel objects, that is, objects unseen during training.
We present a 6D pose refiner based on a render&compare strategy which can be applied to novel objects.
Second, we introduce a novel approach for coarse pose estimation which leverages a network trained to classify whether the pose error between a synthetic rendering and an observed image of the same object can be corrected by the refiner.
arXiv Detail & Related papers (2022-12-13T19:30:03Z) - Few-View Object Reconstruction with Unknown Categories and Camera Poses [80.0820650171476]
This work explores reconstructing general real-world objects from a few images without known camera poses or object categories.
The crux of our work is solving two fundamental 3D vision problems -- shape reconstruction and pose estimation.
Our method FORGE predicts 3D features from each view and leverages them in conjunction with the input images to establish cross-view correspondence.
arXiv Detail & Related papers (2022-12-08T18:59:02Z) - Unseen Object 6D Pose Estimation: A Benchmark and Baselines [62.8809734237213]
We propose a new task that enables and facilitates algorithms to estimate the 6D pose estimation of novel objects during testing.
We collect a dataset with both real and synthetic images and up to 48 unseen objects in the test set.
By training an end-to-end 3D correspondences network, our method finds corresponding points between an unseen object and a partial view RGBD image accurately and efficiently.
arXiv Detail & Related papers (2022-06-23T16:29:53Z) - RandomRooms: Unsupervised Pre-training from Synthetic Shapes and
Randomized Layouts for 3D Object Detection [138.2892824662943]
A promising solution is to make better use of the synthetic dataset, which consists of CAD object models, to boost the learning on real datasets.
Recent work on 3D pre-training exhibits failure when transfer features learned on synthetic objects to other real-world applications.
In this work, we put forward a new method called RandomRooms to accomplish this objective.
arXiv Detail & Related papers (2021-08-17T17:56:12Z) - Neural Articulated Radiance Field [90.91714894044253]
We present Neural Articulated Radiance Field (NARF), a novel deformable 3D representation for articulated objects learned from images.
Experiments show that the proposed method is efficient and can generalize well to novel poses.
arXiv Detail & Related papers (2021-04-07T13:23:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.