Ticking-clock performance enhanced by nonclassical temporal correlations
- URL: http://arxiv.org/abs/2005.04241v2
- Date: Thu, 29 Jul 2021 07:53:55 GMT
- Title: Ticking-clock performance enhanced by nonclassical temporal correlations
- Authors: Costantino Budroni, Giuseppe Vitagliano, Mischa P. Woods
- Abstract summary: We investigate the role of nonclassical temporal correlations in enhancing the performance of ticking clocks in a discrete-time scenario.
We show that the problem of optimal models for ticking clocks is related to the violation of Leggett-Garg-type temporal inequalities.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We investigate the role of nonclassical temporal correlations in enhancing
the performance of ticking clocks in a discrete-time scenario. We show that the
problem of optimal models for ticking clocks is related to the violation of
Leggett-Garg-type temporal inequalities formulated in terms of, possibly
invasive, sequential measurements, but on a system with a bounded memory
capacity. Ticking clocks inspire the derivation of a family of temporal
inequalities showing a gap between classical and quantum correlations, despite
involving no input. We show that quantum ticking-clock models achieving
accuracy beyond the classical bound are also those violating Leggett-Garg-type
temporal inequalities for finite sequences and we investigate their
continuous-time limit. Interestingly, we show that optimal classical clock
models in the discrete-time scenario do not have a well-defined continuous-time
limit, a feature that is absent in quantum models.
Related papers
- Limitations to Dynamical Error Suppression and Gate-Error Virtualization from Temporally Correlated Nonclassical Noise [0.0]
We study a minimal exactly solvable single-qubit model under Gaussian quantum dephasing noise.
For digital periodic control, we prove that, under mild conditions on the low-frequency behavior of the nonclassical noise spectrum, the gate fidelity saturates at a value that is strictly smaller than the one attainable in the absence of control history.
We find that only if decoupling can keep the qubit highly pure over a timescale larger than the correlation time of the noise, the bath approximately converges to its original statistics and a stable-in-time control performance is recovered.
arXiv Detail & Related papers (2024-07-05T18:00:00Z) - A magnetic clock for a harmonic oscillator [89.99666725996975]
We study how the quantum dynamics transforms into a classical-like behaviour when conditions related with macroscopicity are met by the clock alone.
In the description of this emerging behaviour finds its place the classical notion of time, as well as that of phase-space and trajectories on it.
arXiv Detail & Related papers (2023-10-20T09:55:51Z) - Temporal fluctuations of correlators in integrable and chaotic quantum
systems [0.0]
We provide bounds on temporal fluctuations around the infinite-time average of out-of-time-ordered and time-ordered correlators of many-body quantum systems without energy gap degeneracies.
For physical initial states, our bounds predict the exponential decay of the temporal fluctuations as a function of the system size.
arXiv Detail & Related papers (2023-07-17T12:35:38Z) - Work statistics, quantum signatures and enhanced work extraction in
quadratic fermionic models [62.997667081978825]
In quadratic fermionic models we determine a quantum correction to the work statistics after a sudden and a time-dependent driving.
Such a correction lies in the non-commutativity of the initial quantum state and the time-dependent Hamiltonian.
Thanks to the latter, one can assess the onset of non-classical signatures in the KDQ distribution of work.
arXiv Detail & Related papers (2023-02-27T13:42:40Z) - Role of boundary conditions in the full counting statistics of
topological defects after crossing a continuous phase transition [62.997667081978825]
We analyze the role of boundary conditions in the statistics of topological defects.
We show that for fast and moderate quenches, the cumulants of the kink number distribution present a universal scaling with the quench rate.
arXiv Detail & Related papers (2022-07-08T09:55:05Z) - Towards Spatio-Temporal Aware Traffic Time Series Forecasting--Full
Version [37.09531298150374]
Traffic series forecasting is challenging due to complex time series patterns for the same time series patterns may vary across time, where, for example, there exist periods across a day showing stronger temporal correlations.
Such-temporal models employ a shared parameter space irrespective of the time locations and the time periods and they assume that the temporal correlations are similar across locations and do not always hold across time which may not always be the case.
We propose a framework that aims at turning ICD-temporal aware models to encode sub-temporal models.
arXiv Detail & Related papers (2022-03-29T16:44:56Z) - Diagnosing quantum chaos with out-of-time-ordered-correlator
quasiprobability in the kicked-top model [0.6999740786886535]
We consider a benchmark system, the kicked top model, which displays chaotic behaviour in the classical version.
We introduce for this scope the quasi-probability distribution behind the out-of-time-ordered correlator (OTOC)
We compare the behavior of the nonclassicality with entanglement measures, such as the tripartite mutual information of the Hamiltonian.
arXiv Detail & Related papers (2022-01-20T13:46:17Z) - Consistency of mechanistic causal discovery in continuous-time using
Neural ODEs [85.7910042199734]
We consider causal discovery in continuous-time for the study of dynamical systems.
We propose a causal discovery algorithm based on penalized Neural ODEs.
arXiv Detail & Related papers (2021-05-06T08:48:02Z) - Policy Analysis using Synthetic Controls in Continuous-Time [101.35070661471124]
Counterfactual estimation using synthetic controls is one of the most successful recent methodological developments in causal inference.
We propose a continuous-time alternative that models the latent counterfactual path explicitly using the formalism of controlled differential equations.
arXiv Detail & Related papers (2021-02-02T16:07:39Z) - Equivalence of approaches to relational quantum dynamics in relativistic
settings [68.8204255655161]
We show that the trinity' of relational quantum dynamics holds in relativistic settings per frequency superselection sector.
We ascribe the time according to the clock subsystem to a POVM which is covariant with respect to its (quadratic) Hamiltonian.
arXiv Detail & Related papers (2020-07-01T16:12:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.