Optimal PID and Antiwindup Control Design as a Reinforcement Learning
Problem
- URL: http://arxiv.org/abs/2005.04539v1
- Date: Sun, 10 May 2020 01:05:26 GMT
- Title: Optimal PID and Antiwindup Control Design as a Reinforcement Learning
Problem
- Authors: Nathan P. Lawrence, Gregory E. Stewart, Philip D. Loewen, Michael G.
Forbes, Johan U. Backstrom, R. Bhushan Gopaluni
- Abstract summary: We focus on the interpretability of DRL control methods.
In particular, we view linear fixed-structure controllers as shallow neural networks embedded in the actor-critic framework.
- Score: 3.131740922192114
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep reinforcement learning (DRL) has seen several successful applications to
process control. Common methods rely on a deep neural network structure to
model the controller or process. With increasingly complicated control
structures, the closed-loop stability of such methods becomes less clear. In
this work, we focus on the interpretability of DRL control methods. In
particular, we view linear fixed-structure controllers as shallow neural
networks embedded in the actor-critic framework. PID controllers guide our
development due to their simplicity and acceptance in industrial practice. We
then consider input saturation, leading to a simple nonlinear control
structure. In order to effectively operate within the actuator limits we then
incorporate a tuning parameter for anti-windup compensation. Finally, the
simplicity of the controller allows for straightforward initialization. This
makes our method inherently stabilizing, both during and after training, and
amenable to known operational PID gains.
Related papers
- Growing Q-Networks: Solving Continuous Control Tasks with Adaptive Control Resolution [51.83951489847344]
In robotics applications, smooth control signals are commonly preferred to reduce system wear and energy efficiency.
In this work, we aim to bridge this performance gap by growing discrete action spaces from coarse to fine control resolution.
Our work indicates that an adaptive control resolution in combination with value decomposition yields simple critic-only algorithms that yield surprisingly strong performance on continuous control tasks.
arXiv Detail & Related papers (2024-04-05T17:58:37Z) - ReACT: Reinforcement Learning for Controller Parametrization using
B-Spline Geometries [0.0]
This work presents a novel approach using deep reinforcement learning (DRL) with N-dimensional B-spline geometries (BSGs)
We focus on the control of parameter-variant systems, a class of systems with complex behavior which depends on the operating conditions.
We make the adaptation process more efficient by introducing BSGs to map the controller parameters which may depend on numerous operating conditions.
arXiv Detail & Related papers (2024-01-10T16:27:30Z) - Real-Time Model-Free Deep Reinforcement Learning for Force Control of a
Series Elastic Actuator [56.11574814802912]
State-of-the art robotic applications utilize series elastic actuators (SEAs) with closed-loop force control to achieve complex tasks such as walking, lifting, and manipulation.
Model-free PID control methods are more prone to instability due to nonlinearities in the SEA.
Deep reinforcement learning has proved to be an effective model-free method for continuous control tasks.
arXiv Detail & Related papers (2023-04-11T00:51:47Z) - Performance-Driven Controller Tuning via Derivative-Free Reinforcement
Learning [6.5158195776494]
We tackle the controller tuning problem using a novel derivative-free reinforcement learning framework.
We conduct numerical experiments on two concrete examples from autonomous driving, namely, adaptive cruise control with PID controller and trajectory tracking with MPC controller.
Experimental results show that the proposed method outperforms popular baselines and highlight its strong potential for controller tuning.
arXiv Detail & Related papers (2022-09-11T13:01:14Z) - Improving the Performance of Robust Control through Event-Triggered
Learning [74.57758188038375]
We propose an event-triggered learning algorithm that decides when to learn in the face of uncertainty in the LQR problem.
We demonstrate improved performance over a robust controller baseline in a numerical example.
arXiv Detail & Related papers (2022-07-28T17:36:37Z) - Steady-State Error Compensation in Reference Tracking and Disturbance
Rejection Problems for Reinforcement Learning-Based Control [0.9023847175654602]
Reinforcement learning (RL) is a promising, upcoming topic in automatic control applications.
Initiative action state augmentation (IASA) for actor-critic-based RL controllers is introduced.
This augmentation does not require any expert knowledge, leaving the approach model free.
arXiv Detail & Related papers (2022-01-31T16:29:19Z) - Deep Reinforcement Learning with Shallow Controllers: An Experimental
Application to PID Tuning [3.9146761527401424]
We demonstrate the challenges in implementing a state of the art deep RL algorithm on a real physical system.
At the core of our approach is the use of a PID controller as the trainable RL policy.
arXiv Detail & Related papers (2021-11-13T18:48:28Z) - Regularizing Action Policies for Smooth Control with Reinforcement
Learning [47.312768123967025]
Conditioning for Action Policy Smoothness (CAPS) is an effective yet intuitive regularization on action policies.
CAPS offers consistent improvement in the smoothness of the learned state-to-action mappings of neural network controllers.
Tested on a real system, improvements in controller smoothness on a quadrotor drone resulted in an almost 80% reduction in power consumption.
arXiv Detail & Related papers (2020-12-11T21:35:24Z) - Enforcing robust control guarantees within neural network policies [76.00287474159973]
We propose a generic nonlinear control policy class, parameterized by neural networks, that enforces the same provable robustness criteria as robust control.
We demonstrate the power of this approach on several domains, improving in average-case performance over existing robust control methods and in worst-case stability over (non-robust) deep RL methods.
arXiv Detail & Related papers (2020-11-16T17:14:59Z) - Learning a Contact-Adaptive Controller for Robust, Efficient Legged
Locomotion [95.1825179206694]
We present a framework that synthesizes robust controllers for a quadruped robot.
A high-level controller learns to choose from a set of primitives in response to changes in the environment.
A low-level controller that utilizes an established control method to robustly execute the primitives.
arXiv Detail & Related papers (2020-09-21T16:49:26Z) - Reinforcement Learning based Design of Linear Fixed Structure
Controllers [3.131740922192114]
We present a simple finite-difference approach, based on random search, to tuning linear fixed-structure controllers.
Our algorithm operates on the entire closed-loop step response of the system and iteratively improves the PID gains towards a desired closed-loop response.
arXiv Detail & Related papers (2020-05-10T00:53:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.