Fake face detection via adaptive manipulation traces extraction network
- URL: http://arxiv.org/abs/2005.04945v2
- Date: Wed, 16 Dec 2020 06:18:36 GMT
- Title: Fake face detection via adaptive manipulation traces extraction network
- Authors: Zhiqing Guo, Gaobo Yang, Jiyou Chen, Xingming Sun
- Abstract summary: We propose an adaptive manipulation traces extraction network (AMTEN) to suppress image content and highlight manipulation traces.
AMTEN exploits an adaptive convolution layer to predict manipulation traces in the image, which are reused in subsequent layers to maximize manipulation artifacts.
When detecting fake face images generated by various FIM techniques, AMTENnet achieves an average accuracy up to 98.52%, which outperforms the state-of-the-art works.
- Score: 9.892936175042939
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the proliferation of face image manipulation (FIM) techniques such as
Face2Face and Deepfake, more fake face images are spreading over the internet,
which brings serious challenges to public confidence. Face image forgery
detection has made considerable progresses in exposing specific FIM, but it is
still in scarcity of a robust fake face detector to expose face image forgeries
under complex scenarios such as with further compression, blurring, scaling,
etc. Due to the relatively fixed structure, convolutional neural network (CNN)
tends to learn image content representations. However, CNN should learn subtle
manipulation traces for image forensics tasks. Thus, we propose an adaptive
manipulation traces extraction network (AMTEN), which serves as pre-processing
to suppress image content and highlight manipulation traces. AMTEN exploits an
adaptive convolution layer to predict manipulation traces in the image, which
are reused in subsequent layers to maximize manipulation artifacts by updating
weights during the back-propagation pass. A fake face detector, namely
AMTENnet, is constructed by integrating AMTEN with CNN. Experimental results
prove that the proposed AMTEN achieves desirable pre-processing. When detecting
fake face images generated by various FIM techniques, AMTENnet achieves an
average accuracy up to 98.52%, which outperforms the state-of-the-art works.
When detecting face images with unknown post-processing operations, the
detector also achieves an average accuracy of 95.17%.
Related papers
- UniForensics: Face Forgery Detection via General Facial Representation [60.5421627990707]
High-level semantic features are less susceptible to perturbations and not limited to forgery-specific artifacts, thus having stronger generalization.
We introduce UniForensics, a novel deepfake detection framework that leverages a transformer-based video network, with a meta-functional face classification for enriched facial representation.
arXiv Detail & Related papers (2024-07-26T20:51:54Z) - DeepFidelity: Perceptual Forgery Fidelity Assessment for Deepfake
Detection [67.3143177137102]
Deepfake detection refers to detecting artificially generated or edited faces in images or videos.
We propose a novel Deepfake detection framework named DeepFidelity to adaptively distinguish real and fake faces.
arXiv Detail & Related papers (2023-12-07T07:19:45Z) - Deepfake detection by exploiting surface anomalies: the SurFake approach [29.088218634944116]
This paper investigates how deepfake creation can impact on the characteristics that the whole scene had at the time of the acquisition.
By resorting to the analysis of the characteristics of the surfaces depicted in the image it is possible to obtain a descriptor usable to train a CNN for deepfake detection.
arXiv Detail & Related papers (2023-10-31T16:54:14Z) - Latent-OFER: Detect, Mask, and Reconstruct with Latent Vectors for
Occluded Facial Expression Recognition [0.0]
The proposed method can detect occluded parts of the face as if they were unoccluded, and recognize them, improving FER accuracy.
It involves three steps: First, the vision transformer (ViT)-based occlusion patch detector masks the occluded position by training only latent vectors from the unoccluded patches.
Second, the hybrid reconstruction network generates the masking position as a complete image using the ViT and convolutional neural network (CNN)
Last, the expression-relevant latent vector extractor retrieves and uses expression-related information from all latent vectors by applying a CNN-based class activation map
arXiv Detail & Related papers (2023-07-21T07:56:32Z) - MMNet: Multi-Collaboration and Multi-Supervision Network for Sequential
Deepfake Detection [81.59191603867586]
Sequential deepfake detection aims to identify forged facial regions with the correct sequence for recovery.
The recovery of forged images requires knowledge of the manipulation model to implement inverse transformations.
We propose Multi-Collaboration and Multi-Supervision Network (MMNet) that handles various spatial scales and sequential permutations in forged face images.
arXiv Detail & Related papers (2023-07-06T02:32:08Z) - End2End Occluded Face Recognition by Masking Corrupted Features [82.27588990277192]
State-of-the-art general face recognition models do not generalize well to occluded face images.
This paper presents a novel face recognition method that is robust to occlusions based on a single end-to-end deep neural network.
Our approach, named FROM (Face Recognition with Occlusion Masks), learns to discover the corrupted features from the deep convolutional neural networks, and clean them by the dynamically learned masks.
arXiv Detail & Related papers (2021-08-21T09:08:41Z) - Improving DeepFake Detection Using Dynamic Face Augmentation [0.8793721044482612]
Most publicly available DeepFake detection datasets have limited variations.
Deep neural networks tend to overfit to the facial features instead of learning to detect manipulation features of DeepFake content.
We introduce Face-Cutout, a data augmentation method for training Convolutional Neural Networks (CNN) to improve DeepFake detection.
arXiv Detail & Related papers (2021-02-18T20:25:45Z) - DeepFake Detection Based on the Discrepancy Between the Face and its
Context [94.47879216590813]
We propose a method for detecting face swapping and other identity manipulations in single images.
Our approach involves two networks: (i) a face identification network that considers the face region bounded by a tight semantic segmentation, and (ii) a context recognition network that considers the face context.
We describe a method which uses the recognition signals from our two networks to detect such discrepancies.
Our method achieves state of the art results on the FaceForensics++, Celeb-DF-v2, and DFDC benchmarks for face manipulation detection, and even generalizes to detect fakes produced by unseen methods.
arXiv Detail & Related papers (2020-08-27T17:04:46Z) - Fighting Deepfake by Exposing the Convolutional Traces on Images [0.0]
Mobile apps like FACEAPP make use of the most advanced Generative Adversarial Networks (GAN) to produce extreme transformations on human face photos.
This kind of media object took the name of Deepfake and raised a new challenge in the multimedia forensics field: the Deepfake detection challenge.
In this paper, a new approach aimed to extract a Deepfake fingerprint from images is proposed.
arXiv Detail & Related papers (2020-08-07T08:49:23Z) - Exploiting Semantics for Face Image Deblurring [121.44928934662063]
We propose an effective and efficient face deblurring algorithm by exploiting semantic cues via deep convolutional neural networks.
We incorporate face semantic labels as input priors and propose an adaptive structural loss to regularize facial local structures.
The proposed method restores sharp images with more accurate facial features and details.
arXiv Detail & Related papers (2020-01-19T13:06:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.